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A

Functional hardware description languages are a class of hardware description languages that em-
phasize on the ability to express higher level structural properties, such a parameterization and
regularity. Due to such features as higher-order functions and polymorphism, parameterization
in functional hardware description languages is more natural than the parameterization support
found in the more traditional hardware description languages, like VHDL and Verilog. We de-
velop a new functional hardware description language, CλasH, that borrows both the syntax and
semantics from the general-purpose functional programming language Haskell.

In many existing functional hardware description languages, a circuit designer has to use lan-
guage primitives that are encoded as data-types and combinators within Haskell. In CλasH on the
other hand, circuit designers build their circuits using regular Haskell syntax. Where many exist-
ing languages encode state using a so-called delay element within the body of a function, CλasH
specifications explicitly encode state in the type-signature of a function thereby avoiding the node-
sharing problem most other functional hardware description languages face.

To cope with the direct physical restrictions of hardware, the familiar dynamically sized lists
found in Haskell are replaced with fixed-size vectors. Being in essence a subset of Haskell, CλasH
inherits the strong typing system of Haskell. CλasH exploits this typing system to specify the
dependently-typed fixed-size vectors, be it that the dependent types are ‘fake’. As the designers
of Haskell never set out to create a dependently typed language, the fixed-size vector specification
suffers slightly from limits imposed by the typing system. Still, the developed fixed-size vector
library presents a myriad of functionality to an eventual circuit designer. Besides having support
for fixed-size vectors, CλasH also incorporates two integer type primitives.

CλasH can be used to develop more than just trivial designs, exemplified by the reduction
circuit designed with it. e CλasH design of this reduction circuit runs only 50% slower than
a hand-coded optimized VHDL design, even though this first generation CλasH compiler does
not have any optimizations whatsoever. With the used FPGA resources being in the same order as
the resources used by the hand-coded VHDL we are confident that this first-generation compiler
is indeed well behaved.

Much has been accomplished with this first attempt at developing a new functional hardware
description language, as it already allows us to build more than just trivial designs. ere are how-
ever many possibilities for future work, the most pressing being able to support recursive functions.
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A

At the end of my Informatica bachelor I was convinced (as naïve as I was, and probably still am)
that enjoyable intellectual challenges could only be found in the intersection of the fields of Elec-
trical Engineering and Computer Science. at is, most Computer Science courses, given a few
exception, in my curriculum were simply not that challenging, and hence, not fun. e exceptions
were, perhaps unsurprisingly in retrospect, Functional Programming and Compiler Construction.

As I started my master’s degree on Embedded Systems, I never thought that those two subjects
would play such an important role in my master’s thesis. When I was in the office of professor
Smit, looking for a subject for my thesis, I was told that Jan Kuper had some ideas for a project.
Jan’s description of the project literally was (be it that he said it in Dutch): ”Do you remember those
functional description I showed in ECA2? at’s what I want. To make real hardware out of them”.
Quite a vague description, and not the type of project I was expecting to find, but very interesting
nonetheless; a chance to go back to those subjects of Computer Science I found interesting during
bachelor and combine it with my (limited) acquired knowledge of hardware designs. It only took
a few moments of deliberation to come to the conclusion that this project would indeed be a joy
to work on.

Only a month into the project I was joined by Matthijs, of whom I am certain that he could
have written the entire compiler himself, had he not been so busy organizing all those large events
of his. I am glad I was able to work with him on this project, as he is certainly an enjoyable person
to both work, and hang around with. I think we are both happy with the final result, having
even been able to go to the official Haskell conference in Edinburgh to present our work. For this
success, I most certainly want to thank Jan, for both initiating this great project, and always giving
me much welcomed guidance when I was unsure what to work on next.

I also want to thank Bert for always being there to answer questions about VHDL (when I
was perhaps too lazy to look for an answer myself ), and of course I also want to thank Marco for
helping me understand the design of his reduction circuit, and for aiding me in my work in general.

Last, but certainly not least, I would like to thank my mother, for her never ending love, and
having always supported me during my studies.
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1
I

A Hardware Description Language (HDL) is any language from a class of computer languages
and/or programming languages for formal descriptions of digital logic and electronic circuits. e
most famous HDLs are VHSIC HDL (VHDL) [20] and Verilog [19]. ese languages are very
good a describing detailed hardware properties such as timing behavior, but are generally cumber-
some in expressing higher level properties such as parameterization and abstraction. For example,
polymorphism was only introduced in the 2008 standard of VHDL [20] and is unsupported by
most, if not all, available VHDL simulation and synthesis tools at the time of this writing.

A class of HDLs that does prioritize abstraction and parameterization, are the so-called func-
tional HDLs. rough such features as higher-order functions, polymorphism, partial application,
etc. parameterization feels very natural for a developer, and as such, a developer will tend to make
a highly parameterized design sooner in a functional HDL than he would in a more ‘traditional’
HDL such as VHDL. e ability to abstract away common patterns also allows functional de-
scriptions to be more concise than the more traditional HDLs.

Another feature of (most) functional HDLs is that they have a denotational semantics, meaning
that we can actually proof (with the help of an automated theorem prover) the equivalence of two
designs. ough not further explored in this thesis, such equivalence proofs, could be used to proof
that an highly optimized design has the same external behavior as the simple behavioral design the
optimized design was derived from, eliminating the need for the exhaustive testing usually involved
in the verification of optimized designs.

Even though the development of functional HDLs started earlier than the now well known
HDLs such as VHDL and Verilog, these functional HDLs never achieved the same type of fame:
at the time, the ability to make a highly parameterized designs in a natural way, and the ability
to abstract common patterns, were not as important as the details you can specify with VHDL or
Verilog. However, with the increasing complexity of todays hardware designs, and the amount of
effort put into exhaustively testing these designs, the industry might soon recognize the merits of
functional HDLs.

. O   HDL: CλH

e CAES group came with the idea of investigating the use of functional hardware description
as both a research platform for hardware design methodologies, but also as an educational tool

1



2 Introduction
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Figure 1.1: Basic Mealy Machine

to be used in practical assignments on hardware designs. e basic premise was that all hardware
designs describe the combinatorial logic of a Mealy machine [30]. A graphical representation of a
Mealy machine is shown in Figure 1.1. A Mealy machine is a finite state machine that generates
an output, and updates its state, based on the current state and the input. We can simulate such
a Mealy machine in a functional language, using the straightforward run function shown in Code
Snippet 1.1. is simulation function basically maps the input over the combinatorial logic using
the state as an accumulator.

C S . (Simulation of a Mealy Machine).

run [ ] = [ ]
run func state (input : inputs) = output : outputs
where

(output, state′) = func input state
outputs = run func state′ inputs

So the func argument represents the combinatorial logic of the Mealy machine, and the state ar-
gument of course represents the memory element. So, the actual hardware we will have to describe
is the function func, whose most basic design can be seen in Code Snippet 1.2.

C S . (Mealy Machine Logic).

func :: InputSignals→ State a→ (OutputSignals, State a)
func input state = (output, state′)
where

...

e state of the hardware design is modeled as just a regular argument of the function, and is
as such made very explicit. Many existing functional HDLs hide the state within the body of the
function; so in this aspect, the functional descriptions we propose really stands out from the rest.

When compared to a more traditional HDL such as VHDL, we can see how the abstraction of
state in the proposed functional descriptions allows for a clear synchronous design. In Figure 1.2
we can see the description of a Multiply-Accumulate circuit in both a functional HDL and in the
more familiar VHDL. Only by looking at the type of the functional description, it is already clear
which part of the design will be part of the state of the circuit. However, if we examine the VHDL
description, it is only due to our a-priori knowledge that the clk signal will not always have a rising
edge, that we can infer that the circuit will have to ‘remember’ the value of the acc signal.

..  

Now that the basic idea behind our new functional hardware descriptions is there, we have to
think about what kind of syntax, semantics, etc. we want. In this, we have several options: We can
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macc ::
(Integer, Integer)→
State Integer→
(Integer, State Integer)

macc (x, y) acc = (u, u)
where

u = acc + x ∗ y
runMacc = run macc 0

entity macc is port (clk, resn : in std_logic;
x, y : in integer ;
u : buffer integer );

end entity macc;
architecture RTL of macc is
signal acc : integer;

begin
u ⇐ acc + x ∗ y
acc⇐ 0 when resn = ’0’ else

u when rising_edge (clk);
end architecture RTL;

Figure 1.2: Multiply-Accumulate: Functional HDL vs VHDL

either define the syntax and semantics ourselves, and write a parser for this language etc. We can
also embed it as a Domain Specific Language (DSL) inside another language, where we encode the
hardware in custom data-structures. Or, we can use an existing language as a source language and
write our functional descriptions in this language.

e first option requires us to write our own parser, type-checker, etc. If we choose the second
option we have to write a special interpretation function so that we may simulate the hardware
description, and another function to translate it to hardware. For the third option, leveraging an
existing language, we can take all the existing tooling (if available) and modify it so that we can
translate the Abstract Syntax Tree (AST) of the compiled source to hardware.

Writing our own parser, type-checker, etc. seems too much of an effort when we are still in
the exploration phase of our functional hardware designs, so for now, the first option will not be
explored any further. e second option, embedding a DSL in an existing language is certainly
appealing. We get all the parsing and type-checking for free, as it is provided by the host language,
and we get to define our own syntax and semantics. is route has been taken by many other
existing languages, some of which are shown in Chapter 2.

e third option, leveraging an existing language, gives us many of the same benefits as the an
Embedded DSL (EDSL). e existing syntax and semantics are a double-edged sword of course:
all the syntax and semantics is already defined, so we get all that for free. However, some of
the existing language elements might have no meaning in hardware, so we have to teach a user
of our language not to use those language elements. At the start of this master’s assignment we
did not yet fully appreciate/understand the merits of embedding a DSL in a host language, so
the decision was made to leverage an existing functional language for our hardware descriptions.
is has certainly not been a poor choice as we have successfully implemented many aspects of a
functional hardware description language. Not only that, with this option explored, we can now
also investigate how leveraging an existing functional language compares with the EDSL approach
to designing functional HDLs.

ere are many functional programming languages to use as the basis for our functional HDL:
LISP [40], Haskell [34], ML [31], Erlang [3], etc. Of all these possible possible languages to
leverage, we chose Haskell [34]. Even though we did not compare all the options to see which
would suit functional hardware specifications the most, Haskell certainly has many features that
make it a good choice. It has a strong type system that helps a designer to specify certain aspects of
the hardware design upfront, before implementing the body of the function. It was developed to
be the standard for functional languages. Also for us, as designers of a new functional HDL, there
are many benefits: ere is a whole set of existing open-source tools and compilers, including the
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highly optimized flagship Haskell compiler: the Glasgow Haskell Compiler (GHC).

..  

We do not only want to use our new language to specify and simulate hardware, we also want
to generate the actual hardware from our descriptions. Solutions such as programming a Field-
Programmable Gate Array (FPGA) directly are not really a sane exercise, so we have to translate
our descriptions to a format that allows other tools to do this for us. e most basic (textual)
hardware description that every FPGA programming software understands, is a netlist: A format
that describes how the basic electronic components and gates are connected to each other. e most
common netlist format is Electronics Design Interchange Format (EDIF); actually, its specification
covers all aspects of electronic design: schematics, netlists, mask layout, PCB layout etc. e
EDIF format is however too low-level for our current needs, which is just being able to synthesize
functional specifications so that they can run on a FPGA¹.

As a netlist is too low-level, we will use an existing higher-level HDL that already has available
tooling to translate to a netlist format as the target language of our compiler. At the start of this
thesis, the higher-level HDL that met this requirement, and that we were most familiar with, was
VHDL. VHDL can be synthesized to a netlist format as long as we restrict ourselves to a certain
subset of the language. Having VHDL as our target language also gives us the advantage of having
access to the optimizations in the existing VHDL synthesis tools. Maybe having an even higher-
level HDL (such as BlueSpec [4]) as our target language, would have saved us some translations
steps when turning Haskell into this target language. However, it would have taken us considerable
time to familiarize ourselves with such a language and the corresponding tools.

As such, the initial goal for the project is set: to design the tools for our new language, which is
a subset of Haskell, so that we may simulate our functional hardware descriptions and also translate
them to synthesizable VHDL. We call this new language:

CAES Language for Hardware (CλasH)

. A

e original goal of the project soon proved to be too large for one master’s assignment, so the
work was divided over two assignments. e thesis of Kooijman [26] describes the general transla-
tion from Haskell programs to VHDL descriptions. e focus of Kooijman [26] lies on reducing
higher-order, polymorphic functions to first-order, monomorphic function and then translating
these normalized functions to VHDL. e focus of the work described in this thesis lies on the
type aspects of CλasH and the simulation of the hardware descriptions. Also, where the work of
Kooijman [26] describes the general translation to VHDL, the work in this thesis describes specific
translations concerning certain types, data-structures and the functions on these data-structures.

e reason that this thesis so specifically focuses on types and simulation, is that, even though
Haskell has established itself as a successful functional programming language, it still remains to
be determined if its properties are equally useful for functional hardware descriptions. A highly
regarded property of Haskell is its strong typing system, and this thesis will mostly focus on how
we can use this type system to specify the types in our hardware descriptions. Besides being able to
translate our descriptions to actual hardware, we of course also want to simulate our descriptions
(in Haskell).

¹As optimization is not a goal of our current language and tooling, it seems wise not to target Application-Specific
Integrated Circuits (ASICs) for the time being.
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. O

is thesis continues in Chapter 2 with discussing existing functional HDLs, naming their merits,
problems and solutions. en Chapter 3 holds the bulk of this thesis, describing the design and
implementation of the hardware specific types for our language CλasH. To show what is possible
with this first incarnation of CλasH we examine a small case study in Chapter 4. As this is the first
version of CλasH we ran into a few problems during its design, we discuss a few of these problems in
Chapter 5, ultimately making our conclusions in Chapter 6. Many master’s assignments are never
complete, always finding new opportunities to improve the original work; this thesis is certainly
no exception, so we describe possibilities for future work in Section 6.1.

As supporting material for this thesis, there are also a few appendices. Appendix A shows
the VHDL translations for all the functions of our new Haskell vector library. We then have
Appendix B, which goes into the details of our automated VHDL test bench generation, which was
developed to verify the correctness of the generated VHDL. Appendix C discusses some solution
for the node sharing problem encountered in many existing functional HDLs. Appendix D gives
a short introduction to some of the GHC extensions to Haskell, that are relevant to this thesis. It
is meant for a reader with some experience with functional languages, but not with Haskell and
the GHC extensions to Haskell. Readers unfamiliar with Haskell are stressed to read this appendix
before continuing with the rest of this thesis. e last appendix, Appendix E, finishes with a CλasH
description of a 4-tap FIR Filter, and the corresponding, generated, VHDL code. It is included in
this thesis to give the reader an idea of what the generated VHDL looks like.

.. 

is thesis involves a lot of code snippets, and also references to those code snippets. For this
reason, we try to distinguish between types, function, etc. by trying to use different typesetting for
each of these elements:

• Function names are printed italic.

• Type names are printed in a medium bold, sans font.

• Both function variables and type variables are printed italic.

• Code that is inlined in the text is typeset in the same way as the code snippets.

• Library  are printed in SC.
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D

Hardware Description Languages (HDLs) have been around for some time, the popular ones:
VHDL and Verilog both emerged around the mid 80’s. But some functional HDLs, like DAISY
[21] and µFP [38] were actually developed earlier. is chapter tries to give a short overview of
those earlier functional HDLs, and also of the more recent ones like Lava [8] and ForSyDe [35].
We will touch on their merits and faults, and explain the so-called node sharing problem that
many languages encountered in their design; solutions to this problem are however reserved for
Appendix C. is is done because CλasH differs from many existing functional HDLs, and does
not suffer from the node sharing problem. Most of the information in this chapter comes from an
earlier assignment [5] on the exploration of existing functional HDLs.

. P  H D L

e functional HDLs we will see in this chapter are all structural descriptions of synchronous hard-
ware. Some languages, like CλasH, do however allow some behavioral aspects in the hardware de-
scriptions. is section tries to informally introduce the meaning of the earlier mentioned terms,
like structural and synchronous.

..    

For a trivial circuit designs it might suffice draw a transistor layout, but a slight increase in complex-
ity warrants the use of some kind of hierarchy in the design. In the general case a single hierarchy
is not sufficient to properly describe the design process. ere is a general consensus to distinguish
three design domains, each with its own hierarchy. ese domains are:

• e behavioral domain. In this domain, a part of the design (or the whole) is seen as a black
box; the relations between outputs and inputs are given without a reference to implementa-
tion of these relations. e highest behavioral descriptions are algorithms that may not even
refer to hardware that will realize the computation described.

• e structural domain. Here, a circuit is seen as the composition of sub-circuits. A de-
scription in this domain gives information on the sub-circuits used and the way they are
interconnected. Each of the sub-circuits has a description in the behavioral domain or a

7
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Figure 2.1: Gajski Y-Diagram

description in the structural domain itself (or both). A schematic showing how transistors
should be interconnected to form a NAND gate is an example of a structural description,
as is the schematic showing how this NAND gate can be combined with other logic gates
to form some arithmetic circuit.

• e physical (or layout) domain. A circuit always has to be realized on a chip which is essen-
tially two-dimensional. e physical domain gives information on how the subparts that can
be seen in the structural domain, are located on the two-dimensional plane. Fore example,
a cell that may represent the layout of a logic gate will consists of mask patterns that form
the transistors of this gate and the interconnections within the gate.

e three domains and their hierarchies can be visualized on a so-called Y-chart [11] as depicted
in Figure 2.1. Each axis represents a design domain and the level of abstraction decreases from the
outside to the center. It was introduced by Gajski in 1983 and has been widely used since then.

Some of the design actions involved in circuit design can clearly be visualized as a transition
in the Y-chart either within a single domain or from one domain to another. ese are synthesis
steps; they add detail to the current state of the design. Synthesis steps may be performed fully
automatically by some synthesis tools or manually by the designer. Tools that translate designs that
are in structural domain to designs in the physical domain are usually called Place & Route tools.
Large circuit are usually designed in a HDL. ese HDLs usually allow for both descriptions in
the structural domain and the behavioral domain, sometimes allowing even annotations related
to the layout (physical domain). Automated synthesis for the behavioral set of those languages is
usually limited or sub-optimal, due to the complexity of the involved problems, such as automated
scheduling, and the analysis of complex memory access patterns.

Designs approaches in this thesis

e functional HDL we will see in this chapter all belong to the class of structural HDLs, in that
they (only) support designs in the structural domain. CλasH is currently also a structural HDL,



2.2. Existing Functional HDLs 9

though it also has aspects that belong the behavioral design domain. For example, it has support
for choice elements and integer arithmetic.

..    

e kind of hardware we will deal with in this report is synchronous hardware. In synchronous
hardware, every component obeys the same omnipresent clock. e semantics of synchronous
circuits are quite simple, and can be modeled as functions from input streams, and some state,
to output streams. Some synchronous circuits have components that run at different, but related
speeds, mostly through the use of a clock divider circuit. It is still a synchronous circuit as there
is still a single clock that dictates all the other clocks. When modeling this kind of synchronous
hardware, extra measures have to be taken to properly update the different memory elements.

A more general approach is asynchronous hardware, where different components listen to differ-
ent, unrelated clocks (usually called Globally Asynchronous, Locally Synchronous (GALS)). Some
asynchronous hardware design have no clock at all. Asynchronous hardware is usually very difficult
to reason about, as such, it is hard to find a semantic model which is powerful enough to predict
what is going on in the circuit at the electronic level, and simple enough to reason with from the
point of view of a designer.

e functional HDLs described in this chapter, like CλasH, can only model synchronous circuit
where all components run at the same clock frequency.

. E F HDL

ere have been many functional hardware description languages over the years, usually made
obsolete by their successor. is section starts with the two predecessors, µFP [38] and Ruby [22],
of the still actively researched language: Lava. Lava, the third language we touch on, is one of
the most extensively documented functional HDLs, and was the main focus of the individual
assignment [5] leading up to this thesis. e fourth and final language is ForSyDe, of which part
of its compiler (the VHDL AST) is even used in CλasH. Readers interested in other existing
functional hardware description languages are referred to the individual assignment of Baaij [5].

.. µ

µFP [38] extends the functional language, FP [6], designed for describing and reasoning about
regular circuits, with synchronous streams. µFP advocates descriptions using only built-in con-
nection patterns, also called combinators. An example of such a combinator is a row combinator,
which, when applied to a list of circuits, for each circuit in the list connects the output to the input
of the consecutive circuit. e result of applying this combinator to this list of circuits, is a single
larger circuit, which has only one input and one output.

A result of only being allowed to use these combinators is that one is not allowed to give
names to intermediate values or wires, which might lead to awkward circuit descriptions. However,
according to Claessen [8], a big advantage of this connection pattern style that µFP advocates, is
the ease of algebraic reasoning about circuit descriptions: Every built-in connection pattern comes
with a set of algebraic laws.

.. 

e idea of connection patterns was taken further in the relational hardware description language
Ruby, which can be seen as the successor of µFP. In Ruby, circuits and circuit specification are seen
as relations on streams. Ruby also supports built-in connection patterns that have an interpretation
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in terms of layout. Like µFP, Ruby descriptions might get awkward because one is forced to use
the connection style pattern.

.. 

Chalmers-Lava

Lava is a hardware description language embedded in the functional language Haskell. ere are
two versions of Lava in use. e one described in this section, Chalmers-Lava [8] is developed
at Chalmers University of Technology in Sweden and is mainly aimed at interfacing to automatic
formal hardware verification tools.

Lava facilitates the description of connection patterns so that they are easily reusable. Lava also
provides many different ways of analyzing circuit descriptions. It can simulate circuits, just as with
most standard HDLs, but can also use symbolic methods to generate input to analysis tools such
as automatic theorem proves and model checkers. e same methods are used to generate VHDL
from the Lava circuit description. To give a better understanding of how those symbolic methods
work, an example of a symbolic Signal API is shown in Code Snippet 2.1.

C S . (Symbolic Signals).

data Signal = Var String | Component (String, [Signal])
invert b = Component (”invert” [b])
flipflop b = Component (”flipflop” [b])
and a b = Component (”and” [a, b ])
...

So a signal is either a variable name (a wire), or the result of a component which has been supplied
with its input signals. When we build a description out of the above primitive components we
are actually building a data-structure that represents a signal graph. As we now have an actual
graph, we can use standard graph traversal methods which makes the analysis methods for these
descriptions a lot easier to design and implement.

Xilinx-Lava

e Xilinx version of Lava [39] is almost similar to the Chalmers version but focusses more on the
Xilinx FPGA products and has been used to develop filters and Bezier curve drawing circuits. It
also has support for specifying the actual layout of the different components on the FPGA slices.

.. 

ForSyDe [35] is implemented as an EDSL on top of the Haskell programming language. Its im-
plementation relies on many Haskell extensions, some of which are exclusive to GHC, such as
Template Haskell¹. Two different sets of features are offered to the designer, depending on the
signal API used to design the hardware:

Deep-embedded

e deep-embedded signal Application Programming Interface (API), is based on the same con-
cepts as the symbolic methods in Lava: By encoding the signals as data-structures, a traversal of
a hardware description will expose the structure of the system. Based on that structural informa-
tion, ForSyDe’s embedded compiler can perform different types of analysis and transformations.

¹More information about Template Haskell can be found in Section D.5.
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It has a back-end for translation to synthesizable VHDL, and also a back-end for simulation. Even
though it would be possible to simulate the generated VHDL, instead of simulating the original
circuit description, debugging a design using the simulation back-end is most likely faster than
generating and simulating the VHDL for each debug iteration. e deep embedded signal API
only supports synchronous descriptions (or synchronous Model of Computation (MoC), in the
ForSyDe terminology).

Shallow-embedded

Shallow-embedded signals are modeled as streams of data isomorphic to lists. Systems built with
them are unfortunately restricted to simulation (the traversal algorithms work only on symbolic
signals), however, shallow-embedded signals provide a rapid-prototyping framework with which
to experiment with different types of MoCs. e models of computation that are supported are
the Synchronous MoC, the Untimed MoC, and the Continuous Time MoC. Also, ForSyDe has
so-called Domain Interfaces which allow for connecting various subsystems, regardless of their
MoC.

. S  S

All (functional) hardware description languages have to deal with how to model the electronic
signals that will eventually flow through the actual hardware. A complete physical model is often
overly complicated, so usually an abstraction of a signal is used. In CλasH, a synchronous HDL,
a signal is modeled to have a single steady value for a particular tick of the clock.

Many other functional HDLs are often more data-flow like, in that a signal is modeled as
a stream (an infinite list) of values, one for each clock cycle. Instead of thinking of a signal as
something that changes over time, it is a representation of the entire history of values on a wire.
is approach is efficient for many functional HDL when simulating the hardware, because lazy
evaluation and garbage collection combined keep only the necessary information in memory at
any time. To give a better feel for this stream-based approach, we see an And-gate as it would be
modeled in a stream-like language in Code Snippet 2.2

C S . (AND-Gate in a stream-based approach).

andGate :: [Bool]→ [Bool]→ [Bool]
andGate a b = zipWith (∧) a b

Simulating this And-gate for three clock cycles with signal a having the values [True,True,False]
and signal b having the values [False,True,True], will give the expected output: [False,True,False].
Note that the above lists are finite only for the purposes of presentation.

Almost all functional descriptions of hardware require that each circuit acts like a pure math-
ematical function, yet real circuits often contain a state as well. To model this state in the stream-
based approach we delay a stream by one or more clock cycles. Looking at the external behavior,
it now seems as if the circuit description can recollect the state of the signal of one or more clock
cycles ago. To give an idea of how this works, we show the description of one of the most primitive
stateful components you typically find in hardware, a delay flip-flop, in Code Snippet 2.3².

C S . (Stream-based Delay flip-flop).

flipflop :: [Bool]→ [Bool]
flipflop a = False : a

²In many papers on functional HDLs that use streams to model signals, this code example is often referred to as a latch,
which is incorrect, as the stream definition clearly states that it represents signal values for entire clock cycles; latches can
change value during a cycle.
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is description hard-codes the initial state of this delay flip-flop to False, but we could of course
make the description parameterized in this aspect.

. G N: P  S

When a circuit contains a feedback loop, its corresponding graph will be cyclic. For example, take
a trivial circuit with no inputs and one output, defined as follows:

C S . (Oscillate circuit).

inv :: [Bool]→ [Bool]
inv a = map (¬) a
oscillate :: [Bool]
oscillate = flipflop (inv oscillate)

Assuming that the flip flop is initialized to False when power is turned on, the circuit will oscillate
between False and True forever.

Perhaps the deepest property of a pure functional language is referential transparency, which
means that we can always replace either side of an equation by the other side. Now, in the equation:

oscillate = flipflop (inv oscillate) (2.1)

We can replace the oscillate in the right hand side by any value α, as long as the following holds:

α = oscillate (2.2)

And we do: the entire right hand side is equal to oscillate. e same reasoning can now be repeated
indefinitely:

oscillate = flipflop (inv oscillate)
= flipflop (inv (flipflop (inv oscillate)))
= flipflop (inv (flipflop (inv (flipflop (inv oscillate)))))
...

All of these circuits have exactly the same behavior. But it is less clear whether they have the same
structure. Figure 2.2 shows the circuits corresponding to the above equations. So, depending on
how many times you want to evaluate the description in Code Snippet 2.4, the corresponding
structure might be any of the circuits in Figure 2.2; or even all three circuits in parallel, depending
if hardware is generated for each iteration.

It is absolutely essential for a hardware description language to be able to generate netlists. We
must find a way to determine if we already visited a node as we traverse the circuit graph, so that
we can describe the desired feedback loop. e problem thus becomes that we need to be able to
uniquely determine each node in the graph. e problem can be circumvented by only evaluating
a function once, at the cost of losing the ability to evaluate recursive functions.

..    λ

e problem of not knowing the exact structure of a circuit description with a feedback loop does
not apply to CλasH. at is because such a feedback is not made as explicit as they are in other
existing functional HDLs, which are more data-flow like. Take the CλasH description of the
oscillation circuit for example:

oscillate :: State Bool→ (Bool, State Bool)
oscillate (State s) = (s, State (¬ s))
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Figure 2.2: Several oscillation circuits

Compared to the general circuit description found in Code Snippet 1.2, we see that this circuit
has no input signals. e State type indicates that the only input of the function is the state of
the function, which is of type Bool. e function signature also indicates that the output of the
function is of type Bool.

To get back to the issue of node sharing in CλasH: e connecting element between the
updated state and the present state is not visible on evaluation of the circuit description, so there can
be no endless evaluation of a circuit description akin to what we witnessed in the earlier oscillation
circuit description. ere is no doubt that the CλasH description precisely corresponds to the
structure of the top instance of the oscillation circuits portrayed in Figure 2.2. We will only witness
endless evaluation of this circuit if the we apply the circuit description to the run function found
in Code Snippet 1.1.

What this means is that there is no need for CλasH to uniquely determine nodes in the circuit
graph to support feedback loops. Actually, the only type of feedback loops you can explicitly de-
scribe in a CλasH function are purely combinatorial feedback loops. And since we do not want to
make purely combinatorial loops in hardware, there is no reason for a CλasH compiler to support
descriptions that have those feedback loops. Many existing functional HDLs do suffer from the
node sharing problem however, so compilers of these languages had to find ways to uniquely deter-
mine graph nodes. e interested reader is referred to Appendix C to see a number of approaches
to uniquely determine these graph nodes.
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H T

As CλasH is basically just a subset of Haskell which is translatable to VHDL, CλasH gets all the
benefits (and burdens) of Haskell’s strong type system. roughout this chapter we discuss whether
the type specification needs for a HDL can be met by Haskell’s type system. A very important
property of types in HDLs is that they are able to specify the size of an object; something we also
see in many of the VHDL types, such as array and unsigned. e reason why size is so important
in hardware specifications is that without knowing this property there is no way we can determine
the ultimate structure of the hardware. ese size-dependent hardware types are part of a larger
class of types called dependent types.

is chapter begins with an informal introduction of such dependent types in Section 3.1. As
Haskell does not have real dependent types we will also see how they can be faked. e limits
imposed by this fakery play an important role in the ultimate design of the fixed-size vector type,
which we discus in Section 3.2. We add support for vectors in CλasH as they are an ubiquitous
concept to conveniently group elements. So the second section of this chapter discusses the design
process behind the current implementation of fixed-size vectors in CλasH, how they work under
simulation, and how they are translated to VHDL. As we do not want CλasH to be a purely
structural language, we have added support for a very important behavioral concept: integers and
their corresponding arithmetic operators. Section 3.3, which is the final section of this chapter,
discusses the design of the integer primitives in CλasH, how they function under simulation, and
finally how they are translated to VHDL.

. D T

Concepts, such as programs, programming languages, computations and types, are probably familiar
to most readers of this thesis. So to make a potentially long story short: Programming languages are
used to express computations. Computations manipulate values. Typed programming languages
distinguish between types and values. Types are related to values by a typing relation that says what
values belong to what types, so one usually thinks of types as a set of values. Expressions, and other
program parts, can be assigned types, to indicate what kind of values to produce or manipulate.
Types can thus be used to document programs (to clarify what kind of values are involved in a
certain part of the program) and to help detect programmer mistakes.

15
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In statically typed languages, the types are not seen as something that take part in computations,
but rather something that allows a compiler to check that a program is type correct without actually
running the program. Seeing types as a way to organize values, one can ask the question whether
it would be meaningful to have a similar way to organize types? Or to even have values aiding in
the organization of types? e answer is yes, and this is where dependent types come in.

Dependent types reflect the fact that validity of data is often a relative notion by allowing prior
data to affect the types of subsequent data [29]. Types are first class objects in dependent types
systems: they may be passed as arguments and computed by functions from other types or from
ordinary data. Type-level programming is just ordinary programming which happens to involve
types, and the systematic construction of types for generic operations is correspondingly straight-
forward, as we will see later on in this chapter. is thesis is not the place for a full explanation of
dependent types, so a reader in search of (a lot) more detail is referred to works such as those by
Barendregt [7] and Luo [27]. However, a more pragmatic approach to understanding dependent
types might to experiment with them in a dependently typed language like Agda [32], which has a
Haskell-like syntax. e standard example of a dependent type is the type of lists of a given length¹:

data Vector :: Nat→ Type→ Type
where [ ] :: ∀ (A :: Type). Vector Zero A

(:) :: ∀ (A :: Type).∀ (n :: Nat). A→ Vector n A→ Vector (Suc n) A

e above states that a Vector type is constructed out of a natural number (Nat) and another arbi-
trary Type. e datatype has two constructors, the empty vector, [ ], which results in a Vector with
length Zero. e second constructor, (:), concatenates an element to a vector of length n, resulting
in a vector whose length is the Successor of n. e presence of explicit length information allows
us to enforce stricter static control on the usage of vector operations. For example, we ensure that
the tail operations is applied only to nonempty vectors:

vTail :: ∀ (A :: Type).∀ (n :: Nat). Vector (Suc n) A→ Vector n A
vTail (x : xs) = xs

Programming with dependent types is much less convoluted in practice than it might seem at first
glance because the compiler can fill in the details which are forced by the type, such as the A and n
arguments for vTail. In addition, the need for ‘exception handling’ code is greatly reduced: vTail
has no [ ] case, because [ ] is not in its domain.

..    

Haskell’s developers did not set out to create a type-level programming facility, but non-standard
extensions with Multi-Parameter Type Classes (MPTC) and Functional Dependencies (FD) (and more
recently alsoType Families) nonetheless provide the rudiments of one, albeit serendipitously. e
concepts behind Multi-Parameter Type Classes, Functional Dependencies and Type Families are ex-
plained in greater details in Appendix D. ese extensions to the Haskell type class mechanism give
us strong tools to relativize types to other types. We may simulate some aspects of dependent typing
by making counterfeit type-level copies of data, with type constructors simulating data constructors
and type classes simulating datatypes.

Unless a reader is already quite familiar with the mentioned Haskell constructs, all of the above
will probably sound quite alien. For this purpose we will give a short introduction to type-level
programming in Haskell. We do this by first defining a ‘familiar’ term-level representation and
afterwards showing the type-level equivalent. e example will consist of some very basic arithmetic
relations, be it that we might use some unfamiliar encoding of natural numbers: Peano numerals.

¹e reader should note that the example is not Haskell code.
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Peano numerals encode natural numbers using the two basic constructs which we saw earlier when
we encoded the length property in the dependently typed vector type: e Zero construct represents
the natural number 0, and the Successor construct (of course) represents the successor of a Peano
encoded natural number.

To start, we will define these Peano encoded natural numbers (and an abbreviation for a sample
number) in Haskell at the term-level:

data Nat = Zero | Succ Nat
three = Succ (Succ (Succ Zero))

e ‘counterfeit’ type-level copy of the above datatype could then be constructed as follows:

data Zero
data Succ n
type Three = Succ (Succ (Succ Zero))

So where Zero and Succ were constructors for the Nat type in the term-level example, they are now
types in their own right. And the sample number is now also a type on its own right (be it that it is
‘just’ a type alias).

Now that we have these natural numbers we want to define a function that tells us if a number
is even or odd, at the term-level we do that as follows:

even Zero = True
even (Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

We will now define these even and odd functions at the type level using Haskell’s type-class mecha-
nism. Details of the type class mechanism can be found in Appendix D and will not be elaborated
any further in this section. For now, the type class specific syntax should just be seen as the required
syntactic sugar for type-level programming. e type-level functions are defined as follows:

class Even n where isEven :: n
instance Even Zero
instance Odd n⇒ Even (Succ n)
class Odd n where isOdd :: n
instance Even n⇒ Odd (Succ n)

e isEven and isOdd functions specified in their respective classes are defined as a matter of conve-
nience, and could be discarded. We defined these functions so it is easier to ask a Haskell interpreter
to check if a number is even (or odd). So using the class functions we can ask a Haskell interpreter
to check if the earlier defined type-level number Three is even or odd:

GHCi> :type (isEven :: Three)
*** Error:
No instance for (Odd Zero)
arising from a use of ‘isEven’ at <interactive>:1:0-5
Possible fix: add an instance declaration for (Odd Zero)

We get a type error because three is not an even number. An interpretation of the last line is that
if zero were odd, then three would be even.

GHCi> :type (isOdd :: Three)
(isOdd :: Three) :: Three
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e absence of a type error means that three is an odd number.
e given example certainly does not touch on all of the type-level programming facilities found

in Haskell, nor the simulation issues of dependent types in Haskell; this thesis is not the place
for such work. However, there is a lot of excellent material available on these subjects. A good
introductory tutorial on type-level programming in Haskell is Fun with Functional Dependencies
by Hallgren [14]. Readers who are keen on knowing more about the simulation of dependent types
in Haskell in general will certainly enjoy reading Conor McBride’s article: Faking It: Simulating
Dependent Types in Haskell [29].

. F-S V

In general-purpose programming languages, and also HDLs, lists/vectors are used to conveniently
group elements, such as bits. In many programming languages we can deal with dynamically sized
vectors (e.g. linked lists), or even infinitely large vectors when we apply a lazy evaluation strategy.
In HDLs however, both concepts are problematic in their physical realization on hardware. As we
do not have an infinite amount of resources, such as floor space, infinite lists that expand in space
are out of the question. Infinite lists that expand in time are beyond the scope of this thesis, as
CλasH designs can only describe the structural properties of hardware.

To have dynamically sized lists, we would have to reconfigure the layout of the hardware at
run-time. With ASICs this is impossible; and even though some FPGAs do allow for runtime
reconfiguration, it is virtually impossible to use this feature for scaling purposes such as dynamically
sized lists. e reason being of course that it is hard, or even impossible, to determine beforehand
the upper bound of the required floor space for the dynamically sized list. Also, we would need
to design dedicated hardware on the FPGA that will do all this runtime reconfiguration while the
chip is running.

In the end this means that it is paramount for a HDL to support fixed/statically sized lists,
from here on called fixed-size vectors. Recognizing this almost obvious need for fixed size vectors,
and having Haskell’s type system at our disposal, we would of course like to specify the size at the
type level. ere are two very important reason why we would like to specify the exact length of a
fixed-size vector at the type level (information available at compile-time), and not at the term level
(information usually only available at run-time):

• When the exact length of a vector is specified at the type level, it is statically available at
compile-time. is makes the VHDL translation of the vector type and the operations on
vectors very straightforward, as VHDL also needs the length of its arrays to be specified as
part of their type. If the size of the vector where to be specified at the term level, the compiler
will need to do a lot of partial evaluation and bookkeeping to know the exact length of the
vector at any time in the compilation process. is becomes even harder when vectors can
change length by a variable amount. Also, when we have a purely combinatorial circuit with
a vector as one of its inputs there is the problem of the inability to specify the size of this
input vector at the term level. We would have to take special matters, such as specifying a
compiler pragma, to let the compiler know how big the input vector is.

• e type checker will help the engineer in designing correct hardware, as he can specify, in
the signature of the function, what the length of the input vectors should be, and what the
length of the output vectors will be. is way you do not have to do an exhaustive simulation
to find conflicting vector sizes, as they will be caught at compile time.

In Haskell we can easily specify function signatures for functions that work on unconstrained
vectors (implementation details omitted for purposes of presentation):

head :: Nat n⇒ Vector n Int→ Int
head = ...
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Where the type variable n indicates the length of the vector; note that by specifying the context
Nat n we try to indicate that the variable n is some sort of natural number. Ideally we would then
like to have something that allows us to specify a vector with a specific length along the lines of:

v :: Vector 23 Int

Where we say that v is of a Vector type containing 23 values of type Int. Alas, it is not possible to
directly specify the above in Haskell: the term, 23, is not allowed on the right side of the double
colon (::); only types may venture there. As we saw in the previous section however, we can simulate
dependent types in Haskell by making a type-level copies of data/terms. So in a way, we can have
something quite similar to the defined Vector type. We will just use a type-level numeral, akin to
natural numbers from the previous section, to parameterize the vector.

Beside the need to specify the size of the vectors, we also want to specify transformations on
the size of the vectors, or how the size of two vectors relate to each other. Because the size of the
vectors is a type, the operations will of course also have to work directly on types. For example, we
want to be able to specify that the size of a vector resulting from the concatenation of two vectors
is the combined size of the two input vectors:

(++) :: Vector s1 a→ Vector s2 a→ Vector (s1 + s2) a

We start our investigation with an existing library that already has all of the above features. is
fixed-size vector library, called FSV [1], has been developed as part of an existing functional HDL
mentioned in Chapter 2: ForSyDe [35].

..  

e FSV library uses the type-level numerals from the - library [2] to indicate the size
of the vector at the type level. is type-level numerals library uses Multi-Parameter Type Classes
and Functional Dependencies² to specify the relations between the numerals, and the operations on
them, like the summation (+) operator in the type signature of the above (++) function. In this
subsection we will deal with the particulars of the FSV library and the - library at the
same time as we explore the functionality of FSV. We start with the datatype that represents the
fixed-size vector:

newtype Nat s⇒ FSVec s a = FSVec {unFSVec :: [a ]}

e newtype keyword indicates that the datatype definition is actually a datatype renaming from
the list type, [a], to FSVec s a. In this sense it is not a ‘true’ datatype; the exact details of newtype
declarations can be found in Appendix D. e context of the datatype, the part before the ⇒
symbol, means the following: Nat s implies that the type variable s, the size of the vector, is a
numeral that belongs to the set of natural numbers. e natural number, s, is thus not a term literal,
but a type. For example, the number two is represented by the type D2, where the D indicates that is
is a decimal representation³. If you want to use these type-level numerals in the body of a function,
you have to use some sort of term-level representations, as types are only allowed in a signature.
e - library therefor has term-level aliases for all its types; for example, the term-level
representation of the type D2 is d2, whose actual value is ⊥.

e symbol ⊥ is pronounced ‘bottom’, and refers to a computation which never terminates.
It is a ‘value’ with no information: as such, it can be of any type. All the other theoretical aspects
of the ⊥ element are beyond the scope of this thesis. We use it here, and in other examples, when
we need to specify a term of which we do not know the value, but also where the value is of no use

²Both Multi-Parameter Type Classes and Functional Dependencies are explained in Appendix D.
³As apposed to a Binary (B), Hexadecimal (H) or Octal (O) representation that are also present in -.
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to us. In this case, we only care about the type information, so there is no need for knowing the
actual value.

Having covered the context of the datatype declaration, let us go on with explaining the type
declaration, the part between the⇒ symbol and the = symbol: e name of the type is FSVec and
it has two type variables, s and a, which represent the size and the element type respectively.

en follows the constructor part of the datatype declaration, the part after the = symbol.
Actually, we declare both the constructor and de-constructor at the same time. We call them
constructors and de-constructors here, but they are actually renaming constructs: As said earlier,
a newtype declaration is datatype renaming. So what this means is that the ‘constructor’, FSVec,
retypes its argument, which had type [a], to be of type FSVec s a. at is why the size argument, s, is
not part of the ‘constructor’ (even though you might think it should be): e FSVec ‘constructor’
is just a retyping construct. e curly braces following the FSVec constructor, {...}, are not meant
to be read as the Haskell record syntax, but as the syntactic sugar to introduce the de-constructor,
unFSVec. is ‘de-constructor’ retypes from type FSVec s a to type [a]. Again, a more detailed
explanations about newtype declarations in general can be found in Appendix D.

Safe and Unsafe Constructors

We call the constructor of FSVec introduced by the newtype declaration unsafe, as it can not give
any static guarantees about the list that is given as the argument for constructing the FSVec vector.
is means that the type checker can not guarantee that the actual number of elements inside the
vector, is the same as is indicated by its type. For example, the following code is allowed by any
Haskell compiler:

v :: FSVec D2 Int
v = FSVec [1, 2, 3]

So there is now a mismatch between the number of elements in the vector (what we call the dynamic
length), and the length indicated by the type (what we call the static length). For this reason, the
constructor exposed by the newtype declaration is explicitly hidden by the designers of the FSV
library, so that users can not create invalid vectors by accident. With the original constructor
hidden, the FSV library exposes several other ways to construct a fixed size vector. is way, a
user has to explicitly choose either a safe (we call it safe when the user of a library can only create
vectors that have a matching dynamic and static length) or unsafe constructor.

We can, for example, unsafely build a vector from a list using unsafeVector, which has two
arguments: A type-level numeral indicating the static size of the list, and a list containing the
elements. It is unsafe because, like the original constructor of FSVec, the static size of the vector
and dynamic size of the list can differ. However, the function unsafeVector does, at runtime, check
for mismatches between the dynamic and the static length of the vector and reports an error if this
happens to be the case (something the original FSVec constructor could not do):

GHCi> unsafeVector d2 [1,2,3]
*** Exception: Data.Param.FSVec.unsafeVector: dynamic/static length mismatch

As we mentioned earlier, the designers of the FSV library also implemented safe constructors.
An example of such a safe vector constructor is the Template Haskell function vectorTH, which has
the following signature:

vectorTH :: Lift a⇒ [a ]→ ExpQ

It takes a list as its argument, and turns it into an AST that represents the Haskell code for the
fixed-size vector. Some explanation about Template Haskell is certainly in order here, as it should
give some insight as to how the vectorTH function works, and why it is considered safe.
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Template Haskell provides the ability for a Haskell program to perform computations at com-
pile time, which generates new code that can then be spliced into the program. Splicing is the
act of inserting a generated AST in the AST of the original program. Template Haskell defines
a standard algebraic data type for representing the abstract syntax of Haskell programs, and a set
of monadic operations for constructing programs. ese are all expressible in pure Haskell. Two
additional syntactic constructs are introduced:

• A quotation construct, J...K, that gives the AST representation of the fragment of code within
the brackets.

• A splicing construct, $(...), that takes a code representation tree (AST) and effectively inserts
it into a program.

In Template Haskell, all aspects of Haskell which the ordinary programmer can use are also available
to process the AST at program generation time. us a function that works on these ASTs, e.g.
vectorTH, is just an ordinary Haskell function definition.

When we look at the signature of the vectorTH function we see that the result is of type ExpQ
(an alias for Q Exp), which indicates that it is a (monadic) function which returns the AST for a
piece of Haskell code. e elements of the list argument have to be of the Lift class, so that the
vectorTH function can get the AST representation of the elements.

e reason that this vectorTH function can safely construct a vector from a list, is that we can
just ask for the length of the list at compile-time and generate the corresponding vector type. We
could not do this with the FSVec constructor, as we needed to specify the exact vector type (and
thus its length) up front. e resulting AST of the vectorTH function is of no use to us, we want
the actual vector. So, using the $(...) syntax, we can splice the generated AST of the vector into
a program, and resume compilation. When we ask for the type of the spliced vectorTH function,
we see that the vector has a generated static length that corresponds with the number of elements
in the list, meaning that the vector was constructed safely:

GHCi> :type $(vectorTH [1::Int,2,3])
$(vectorTH [1::Int,2,3]) :: FSVec D3 Int

How type-level vector sizes help a hardware designer

Using one of the safe constructors, we will examine an example function and show how the type
checker can help us ensure that the vector length we want is the vector length we get. Code
Snippet 3.1 shows a function foo that, according to its type signature, only accepts vectors of size
two, and always outputs a vector of size four. e body of the function however does not do what
the signature promises⁴.

C S . (Vector concatenation - Incorrect).

foo :: FSVec D2 Int→ FSVec D4 Int
foo x = out
where

y = copy d3 0
out = x ++ y

Looking at the body of the function we see a new function, copy n a, which creates a vector con-
taining n copies of element a (the Integer 0 in the example), where n is a type-level numeral. e
function ++ is the vector concatenation function equivalent to the one for lists. e above code
does not compile (type-check), because the body of the function does something different than
expected. e compiler reports the error shown on the next page:

⁴Or, as seen from the other side of the fence: e signature lies about what the body does.
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Couldn’t match expected type ‘D4’ against inferred type ‘D3’
...
arising from a use of ‘++’ at foo.hs:16:10-15

e reported error is slightly confusing, especially given that it rises from the use of ++. It requires
an in-depth knowledge of the type-level numerals of the - library to understand why
the error was reported as it was above, and is beyond the scope of this thesis. Nonetheless, the
compiler informs us that it can not match the length of two vectors. e reason being of course
that concatenating the vector x (size 2) to the vector y (size 3) results in a vector of size 5. However,
the type signature of foo promised that the output would be a vector of size 4. Depending on what
we want, we can either change the body, or, change the type signature of the function, to fix the
error.

Problems with FSVec

Having a potential fixed-size vector library for CλasH in the form of the FSV library, one would
think we could start focussing on the translation of the vectors and vector functions to VHDL.
Instead, due to certain problems with the - library that FSV uses, we are forced to
search for a new type-level numerals library first. Below we see one of many examples where the
- library makes it impossible for us to describe an (intuitive) type signature for a function.

Code Snippet 3.2 shows a simple rotation function, with its intuitively correct (but sadly in-
complete!) type signature.

C S . (Rotate in FSVec).

rotate :: Pos s⇒ FSVec s a→ FSVec s a
rotate vect = (last vect)+>(init vect)

Some explanation for the code snippet is in order: e context of the signature, Pos s, tells us that
the size, s, of the vector should be non-zero; it has to be provided because the last and init function
are only defined for non-empty vectors. e function signature, FSVec s a → FSVec s a, then
tells us that the vector length should stay the same. e operator +>, is equivalent to the cons (:)
operator for lists. When we try to compile the rotate function we get the following error:

Could not deduce (Data.TypeLevel.Num.Ops.IsZero s yz, DivMod10 s yi yl)
from the context (Pos s)
arising from a use of ‘init’ at rotate.hs:25:30-38
Possible fix:
add (Data.TypeLevel.Num.Ops.IsZero s yz, DivMod10 s yi yl)
to the context of the type signature for ‘rotate’
...

e above error apparently rises from the use of init:

init :: (Pos s, Succ s′ s)⇒ FSVec s a→ FSVec s′ a

e Pos s part of the context should be familiar to us now, the Succ s′ s specifies that s is the
successor of s’ : Meaning that the init function returns a vector that is one size smaller than the
vector it was given as its arguments. Still this gives us no clue as to why the dependencies on the
IsZero and DivMod10 class are suddenly exposed in the error message. Most likely they are part of
some of the induction rules related to Succ.

As IsZero and DivMod10 are part of the internal induction rules they are hidden by the -
 library (meaning that they can only be used by functions inside the - library),
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making it impossible to implement the suggestion given by the error message. e problem lies
with the - library, not the FSV library itself: Meaning that we only need to find a
replacement for the type-level numerals and keep most of the functionality of the FSV library to
be used as the vector library for CλasH.

As the - library is not the only existing type-level numerals library in existence, we
do not have to write our own numerals library just yet. Another type-level numerals library, called
 [12], has similar signatures as the - library, but uses Type Families instead of Multi-
Parameter Type Classes and Functional Dependencies to describe the relations between numerals and
the operations on them. In the next subsection, we will see that a fixed-size vector library using
the numerals from the  library allow us to write a larger number of functions when compared
to the FSV library.

..       : 

Due to the problems with the numerals of the - library described in the previous sub-
section we have completely re-written the original FSV library to make use of the type-level
numerals and operations from the  library. We call this new library TFV: Type Family Vector
library, as it uses type-level numerals based on Type Families.

In Code Snippet 3.3 we can see a new description of the rotate function that we tried to describe
earlier using the FSV library. Although the type context is certainly larger than that of the rotate
function found Code Snippet 3.2, it compiles, and also behaves correctly.

C S . (Rotate with TFVec).

rotate :: (PositiveT pT, NaturalT nT, nT∼Pred pT, pT∼Succ nT)⇒
TFVec pT a→ TFVec pT a

rotate vect = (last vect)+>(init vect)

Let us examine the new syntax first: e ∼ operator in the context of the type signature. is
operator,∼, is the type equality coercion operator, and was introduced together with the type families
extension to Haskell [41]. e ∼ operator asks the type-checker to enforce that the type on the
left-hand side of the operator is ‘equal’ to the type on the right-hand side. We put ‘equal’ between
quotes to indicate that the types are not intentionally equal, rather that, if the types were to be
erased the program would not ‘go wrong’.

e context of the above type signature is larger than expected, let us examine it in greater
detail:

• PositiveT pT: e variable pT, the size of the vector, is a positive number; this context must
hold because the functions last and init are only defined for vectors whose size is larger than
zero.

• NaturalT nT, nT∼Pred pT, pT∼Succ nT: Specifies that the successor of the predecessor of
the variable pT is again pT. Currently, there seems to be no way in GHC to specify this
relation at a higher level⁵. is rule is needed because GHC infers that the type of the body
of the function is: TFVec pT a → TFVec (Succ (Pred pT)) a. Without the context, the
type checker can not reduce (Succ (Pred pT)) to pT, and as such not determine that the
type of the body is equal to the function signature.

As we will see later on, many more arithmetic relations, some of which most people take for granted
(such as the commutativity of addition (+)), have to be explicitly specified by a developer! ey
can not be implicitly deduced by a compiler (like GHC)! e ‘technical’ reason why GHC will not

⁵ere is however research on specifying invariants at the type-level [36]
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reduce the above arithmetic relation will be discussed below. e ‘theoretical’ reason why GHC
can not automatically deduce arithmetic relations will be discussed in a later subsection.

Now, the technical reason why GHC would not automatically reduce Succ (Pred pT) to pT is
that the type-checker has not been given the ‘rules’ to execute this reduction. In the Type Family
system, Succ a is defined as a relation for all types a. We need to define so-called Type Instances for
each specific type so that the type-checker knows what to do with the relation Succ a when applied
to that type. For example, the Type Instance for Succ a on the D1 type could be specified as follows:

type instance Succ D1 = D2

is means, that the type checker now knows that it can reduce the instance of Succ D1 to D2. In
the  library, D1, D2, etc. are actually convenient type aliases for more ‘complicated’ underlying
types. So in the  library, the Type Instances for those relations, such as Succ, are actually specified
on the ‘complicated’ underlying types. However, the type instances for those relations work on the
type aliases as well, as type aliases are transparent for the type-checker. In effect, the type-checker
can reduce every instance of the Succ relation for every defined⁶ decimal a to the corresponding
successive decimal b. is also applies to all the other type-level relations and operations: All
specific decimal instances can be reduced to a normalized form. But, we can not reduce the general
case of the relations and operations, as we can not specify any rule (Type Instance) for this. at
is the reason why we had to supply the type equality coercion in the context of the new rotate
function, so that the type-checker now knows that the ‘rule’: the successor of the predecessor of a
is again a, applies to the general case in that specific function.

When we look at the context of the rotate function it is certainly not as concise as we hoped
for. But, it is at least possible to specify a context that is satisfactory for the type-checker. Hopefully
we can lift the context (Succ (Pred pT))∼pT to a higher level, like maybe a type class or type-level
invariant, in a future release of GHC⁷.

Another bonus of using the  type-level numerals, and their operators, are the clearer error
messages. If we refactor the function foo function from Code Snippet 3.1 to use the new TFV
vector library and try to compile it we get the following error:

Couldn’t match expected type ‘Dec4’ against inferred type ‘Dec5’
Expected type: TFVec D4 Int
Inferred type: TFVec (D2 :+: D3) Int
In the expression: out
...

e new error message is much clearer about how the expected and inferred lengths vector actually
differ, when you compare it to the error given by the compilation attempt of the original function
foo of Code Snippet 3.1.

TFVec and pattern matching

Recursive functions on the default lists in Haskell often exploit pattern matching, such as matching
on either the empty list, or a non-empty list. A very familiar function on lists, map, could for
example be specified as shown in Code Snippet 3.4.

C S . (Map over lists).

map :: (a→ b)→ [a]→ [b ]
map f [ ] = [ ]
map f (x : xs) = (f x) : (map f xs)

⁶e  library has generated aliases, using Template Haskell, for type-level numerals between -10000 and +10000.
⁷e stable release of GHC at the time of this writing is 6.10.4.
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e map function from Code Snippet 3.4 can not be specified in the same recursive manner with
vectors from either the FSV library or TFV library. e root of the problem lies in its non-
recursive constructor, shown below:

newtype (NaturalT s)⇒ TFVec s a = TFVec {unTFVec :: [a ]}

e implication of the above constructor is that there is only one constructor, and so it is used to
construct both empty vectors and non-empty vectors. is is very unlike the familiar Haskell list
type, which has two constructors, [] and (:). is single constructor of the TFVec vector makes it
impossible to implement a simple map function without deconstructing the vector to a list. For
example, the definition of vmap found in the TFV library, internally uses the map function
defined for lists:

vmap :: (a→ b)→ TFVec s a→ TFVec s b
vmap f (TFVec xs) = TFVec (map f xs)

However, as we explained earlier, the original TFVec constructor is hidden from the eventual user
(it is only available within the library): We, the developers of TFV, did not want a user to be
able to access the internal list representation of the vector as he could then accidentally mismatch
the dynamic and static length of the vector. Also, allowing functions defined on lists would mean
that the CλasH compiler suddenly needs to support dynamic lists, something which does not fit
in the timeframe of this thesis.

Even if we have access to the internal list (remember that the TFVec constructor is actually
hidden from users), but disallow any operations on lists, we run in to problems if we try to define
a map function similar to the one in Code Snippet 3.4:

C S . (Map over Vectors - Failed attempt).

vmap :: (a→ b)→ TFVec s a→ TFVec s b
vmap f (TFVec [ ]) = TFVec [ ]
vmap f (TFVec (x : xs)) = (f x)+>vmap f (TFVec xs)

e problem we run into with the vmap function from Code Snippet 3.5 is that we do not
know the static length of the vector returned by the recursive vmap call, as we do not know the
static length of the expression (TFVec xs). So, given that the signature of +> is:

(+>) :: a→ TFVec s a→ TFVec (Succ s) a

en the only way for the type signature of vmap to hold is when the following is true:

Succ s ∼ s

is needs to be true because the vmap function, given a vector of length s returns a vector of length
s, but the +> function returns a vector with a length of Succ s given a vector of length s. Obviously
our arithmetic relations would become inconsistent if, Succ s ∼ s, was true. We should therefor
not specify it as part of the context of vmap. e result is that the definition of vmap in Code
Snippet 3.5 is invalid and can not be corrected.

As we still want a developer to be able to exploit pattern matching for his recursive functions
we will explore a new approach to fixed-sized vectors. is new approach will use a recursive
datatype (like the familiar list type) where the constructor for an empty vector is distinct form the
constructor of a non-empty vector, while still be encoding the size of the vector inside the type. A
first attempt at this new vector description is made in the next subsection.
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..  -    

One approach to constructing fixed-size vectors (instead of the single constructor newtype ap-
proach) is a Generalized ADT (GADT), where we use Peano numerals to indicate the size. e
GADT shown in Code Snippet 3.6 is the Haskell equivalent of the dependently typed vector we
saw in Section 3.1. As Haskell does not have real dependent types, we use the Peano encoded
type-level natural numbers from Section 3.1 to encode the size of the vector.

C S . (Fixed Size vector as a GADT).

data Zero
data Succ n
data Vector n e where

Nil :: Vector Zero a
Cons :: a→ Vector n a→ Vector (Succ n) a

e first two lines of Code Snippet 3.6 repeat the definition for the Peano-encoded numerals.
We can’t make these type-level numerals safe: e argument n of the Succ n datatype can not
be restricted to either Succ n or Zero by Haskell’s type system. We, as developers, have to keep
ourselves in check when we use these Peano numerals and not generate inconsistent numerals by
accident.

en we see the Vector GADT, which is parametric in its size and element type. e GADT
has two constructors:

• Nil, which creates an empty vector (its size is Zero).

• Cons, which has two arguments, the first argument being the new element that we want to
add, and the second argument being the existing vector we want to add this new element
to. It results in a vector whose size is the successor (Succ n) of the size of the vector that was
passed as an argument.

Using this new vector implementation we can define the vmap function similar to the map function
for lists we saw in Code Snippet 3.4. We can see this new vmap function in Code Snippet 3.7.

C S . (Map over fixed-size vectors).

vmap :: (a→ a)→ Vector s a→ Vector s a
vmap f Nil = Nil
vmap f (Cons x xs) = Cons (f x) (vmap f xs)

Another function we can describe in a recursive manner is the append function (++), which takes
two vectors and appends them. e code is shown in Code Snippet 3.9. But before we do that we
define the type-level addition operation on Peano-encoded numerals in Code Snippet 3.8.

C S . (Addition of two Peano-encoded numerals).

type family x + y
type instance Zero + y = y
type instance (Succ x) + y = Succ (x + y)

So the first line, type family x+y, defines the existence of the type-level + operator. e second and
third line specify the instances of the + operator for the Peano-encoded numerals. e instances
themselves should be straightforward in how they encode addition (+).

We need this + operator to be able to specify that the size of the resulting vector of the append
function is the size of the two input vectors combined.
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C S . (Appending two fixed-size vectors).

append :: Vector s1 a→ Vector s2 a→ Vector (s1 + s2) a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Having this new GADT-based vector, it seems as though we can at least have the same functionality
that we had with the vectors from the TFV library. However, we now have the additional ability
to define pattern-match based recursive functions on fixed-size vectors.

Problems on the horizon

Even though the use of GADTs and type families seems to solve all our recursive function defini-
tion problems at first, there are now other problems that arise. A simple function, merge, makes
us reconsider if type-level programming in Haskell is truly ready to be combined with generally
recursive functions. e function merge interleaves the elements of two vectors, and the description
is very similar to that of the append function. It is shown in Code Snippet 3.10. We purposely
made the description of merge very similar to append, to highlight the problem at hand.

C S . (Merging two fixed-size vectors).

merge :: Vector s1 a→ Vector s2 a→ Vector (s1 + s2) a
merge Nil ys = ys
merge (Cons x xs) ys = Cons x (merge ys xs)

If you scan over the code too quickly you would not even notice the difference between the ap-
pend and merge function, except for the name of course. e difference lies in the reversal of the
arguments in the recursive call of merge.

Unlike the append function, merge will not compile. In the second clause of merge, the GADT
pattern match exposes the equality s1∼Succ s1′, where s1’ is the length of xs variable. Now, the
type checker expects the resulting vector of the expression merge ys xs to have the length s1′ + s2,
based on the definition of the (+) operator in Code Snippet 3.8. However, it infers, based on
the signature of merge, the length s2 + s1′. Hence, for this code to type check, commutativity of
addition (+) must hold:

∀s1.∀s2.(s1 + s2) ∼ (s2 + s1) (3.1)

While we may think that this equation readily holds for any s1 and s2, this is not so. Due to the
openness of the type family Add type, one may add at any time an additional type instance, e.g.,

data K
type instance K + Zero = Zero

such that K + Zero ̸≡ Zero + K and Equation (3.1) no longer holds. is is the theoretical reason
why GHC can not just automatically infer ‘reduction rules’ for type families, something we saw
earlier when we had to define the type context, Succ (Pred s)∼s, for the rotate function (Code
Snippet 3.3).

Invariants as term-level functions

Haskell has no support for invariants, such as the commutativity of addition, at the type level.
However, it is still possible to implement invariants at the term level, so as to make the merge
function type-check. is solution comes from a paper by Schrijvers et al. [36], which actually
describes a language extension to Haskell to support type invariants. We first need to reify coercions
at the term level using a GADT which witnesses the equivalence of two types, as well as reify the
types (such as length annotations) using singleton types (Code Snippet 3.11).
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C S . (Equality witness of two types).

data Eqv s t where
Eqv :: (s∼t)⇒ Eqv s t

data Nat n where
Nz :: Nat Zero
Ns :: Nat n→ Nat (Succ n)

An invariant such as commutativity of addition is then implemented as a function that analyzes
the term level representatives and constructs the proof (Code Snippet 3.12).

C S . (Proof construction for commutativity of addition).

comm :: Nat x→ Nat y→ Eqv (x + y) (y + x)
comm Nz Nz = Eqv
comm Nz (Ns y) = case addZ y of Eqv→ Eqv
comm (Ns x) Nz = case addZ x of Eqv→ Eqv
comm (Ns x) (Ns y) =
case comm x y of

Eqv→ case (comm (Ns x) y, comm x (Ns y)) of
(Eqv, Eqv)→ Eqv

where addZ function similarly implements an auxiliary invariant stating that:

∀n. n + Zero ∼ n. (3.2)

To apply the invariant and have the merge function function type-checked, the length of the vectors
must be computed separately. e new merge function function that takes the commutativity of
the addition of the vector lengths into account is shown in Code Snippet 3.13.

C S . (Merge refactored - taking commutativity of addition into account).

merge :: Vector s1 a→ Vector s2 a→ Vector (s1 + s2) a
merge Nil ys = ys
merge (Cons x xs) ys =
case comm (length xs) (length ys) of

Eqv→ Cons x (merge ys xs)
length :: Vector s1 a→ Nat s1
length Nil = Nz
length (Cons x xs) = Ns (length xs)

Of course, implementing invariants in this way has a cost at runtime, and since Haskell does not
enforce that such a ‘proof ’ covers all the cases and will not loop indefinitely, we would need to rely
on an external verifier to check the totality of that function. Also, we could have written the comm
function as shown below, which does not prove commutativity at all. e unsafeCoerce function⁸
will just lie about the commutativity (even though it sometimes holds).

comm :: Nat x→ Nat y→ Eqv (x + y) (y + x)
comm = unsafeCoerce Eqv

⁸e highly unsafe primitive unsafeCoerce converts a value from any type to any other type.
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..    

is section set out with the goal to make a fixed-size vector type, where the length is a parameter
of the vector type. is led to the creation of the TFV library, which has a myriad of functional-
ity. However, realizing we could no longer pattern match on either empty or non-empty vectors,
and thus lacking the means to specify constructor-based recursive functions, we explored the use
of representing a fixed-size vector using two constructors. Sadly, the current state of type-level pro-
gramming in Haskell prevented us from achieving general recursion that was easy to use: Needing
to prove such basic things as the commutativity of addition would probably be a first of many
hurdles to take.

We chose not to explore a GADT based vector library for CλasH any further for two reasons:
e first one being that even though describing invariants such a commutativity, distributivity, etc.
for the type-level operations would be a useful exercise indeed, it does not fit into the timeframe
of this master’s thesis. e second reason is that, for the time being, CλasH is mostly meant as a
rapid prototyping language. erefore we do not want to confront users with cumbersome ways
to incorporate the proof builders, like the example shown in Code Snippet 3.13. Preferably we do
not want to confront them with proofs at all.

e reason why we do not run into the kind of problems like proving commutativity, with the
TFV library lies in its implementation. Most functions of the TFV library unpack the vector
to a list, apply the equivalent list-transformation, and pack the list into a vector of the correct size
again. e safety of the library can thus not be guaranteed by the compiler. e user will have to
put his faith in us, the designers of the TFV library, that all the functions behave correctly.

It would be an option to expose these unsafe constructors and deconstructors to the eventual
user of CλasH and the TFV library. We chose not to however, because we want CλasH to
catch as many design errors at compile-time as possible. Exposing the unsafe constructors and
deconstructors would mean that errors could then only be caught at run-time. So, with those unsafe
constructors hidden, users of CλasH will only be able use the vector transformation functions
defined in the TFV vector library, and not be able to define any of their own.

In the end, we decide to use the TFV library as the vector library for CλasH. Even though
it has the earlier mentioned shortcomings, it still provides the eventual hardware designer with
a plethora of functionality. Perhaps the further exploration of the GADT-based vector can be
performed in future work.

..   

Having made the choice for the vector library, all that remains is to translate the types and functions
to equivalently behaving VHDL constructs. Translating the Haskell type to the VHDL type is the
easiest part, as VHDL already has the array type. Take the following Haskell type for example:

type Example = Vector D8 Bit

is type can be translated to the following, corresponding VHDL type:

subtype tfvec_index is integer range− 1 to integer′high;
type vector_std_logic is array (tfvec_index range<>) of std_logic;
subtype vector_std_logic_0_to_7 is vector_std_logic (0 to 7);

e first subtype declaration, the index range, is needed because some vector functions might return
empty vectors. To define such arrays in VHDL, we usually give them an index range from 0 to -1,
to indicate that they are a null slice. at is why the default natural range (used for example by
std_logic_vector) will not suffice. is range index has only to be defined once, as all unconstrained
vectors will use this range.
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e second type declaration is an unconstrained array declaration, it only defines that vec-
tor_std_logic is an array, and has std_logic as an element type. e CλasH built-in Bit type is
translated to the VHDL std_logic type.

e third, and final declaration, defines the size of the array. In this case it has 8 elements,
and thus the index runs from 0 to 7. Seasoned hardware designers might wonder why the index
is ascending (0 to 7) and not descending (7 downto 0), as a descending index is a common
practice. We have chosen to use an ascending index because Haskell lists also intuitively also have
an ascending index. For example, when when define the list: [a, b, c, d], the index of the left-
most element is 0, and the right-most element has index 3, and the list has as such an intuitively
ascending index for those of us used to a left-to-right writing system. Nonetheless, if deemed
preferable, the order of the indexes could be reversed with relative ease in a future version of the
CλasH compiler.

e subtype with the specified range will be used for signal declaration, and the unconstrained
vector type is mostly used in vector transformation functions. If there is a another vector type that
has the same element type but a different size, we will only have to add another subtype declaration.

Translating vector functions

When translating the vector functions to VHDL two things have to be taken into account. e
body of the vector functions of the TFV library actually deconstruct the vector to a list, and
applies the corresponding transformation on this list. So, if we chose to generate hardware as
we traverse the recursive list functions, we need not only suddenly support Haskell lists, but also
calculate the length of the list for each recursive step. Secondly, because of the choices made earlier,
there is only a predefined set of vector transformation functions.

For these two reasons, we chose to make fixed translations, templates, for all the functions
defined in the TFV library, instead of a general way to handle all vector functions. e downside
of this solution is of course, that most of this work could be deleted from the compiler codebase
once CλasH supports general recursion. However, the framework for specifying fixed translations
could be left intact for optimization purposes. For the time being though, having fixed translations
seems to be a valid choice, as it will take some time and work (as in, at least the timeframe and
amount of work of an entire master’s assignment) before general recursion will be supported in
CλasH.

It turns out that the fixed translations for all the vector functions are quite straightforward. All
fixed translations are listed in Appendix A, and only one will be discussed here. We chose one of
the higher-order functions, foldr, as it is one of the more elaborate translations. Let us start with
the function signature as we know it for lists:

foldr :: (b→ a→ a)→ a→ [b]→ a
foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

What foldr does is replace the structural components of the vector data structure with functions and
values in a regular way. e empty vector is replaced by a starting value, and all the cons operators
((:) for lists) are replaced by a function. In Figure 3.1 we can see a graphical representation of this
transformation applied to a list, where the starting value is called z. So, if an empty vector is passed
to this function, all it actually does is to return the starting value. So in VHDL we will translate
this to a simple signal assignment:

a⇐ z;

e most interesting part is of course the transformations for vectors that have one element or more.
e VHDL template for the foldr function on non-empty vectors is shown in Code Snippet 3.14.
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Figure 3.1: Right fold transformation

It is best to make the template a VHDL block statement, so that we can define a temporary
vector signal that only exists within the local scope of the block statement. is temporary vector
signal, tmp, is used as a ‘storage’ vector for the results generated by the instantiated components.
Also, you can witness that the calls to the function f are translated to a component instantiation of
the entity f. As you can determine by examining the first generate statement, we work from the last
vector element towards the first element. So for the first iteration of this generate statement, the last
element of the vector and the starting value are passed to the function f, and the result is stored in
the last element of the temporary vector, tmp. For the other iterations the generate statement works
its way up the input vector, applying the function f in the same fashion as witnessed in Figure 3.1.
e result of the last function application is finally assigned to the output value.

C S . (VHDL template for foldr).

foldrVectorBlock : block
signal tmp : array_of_a_with_length_of_veci;

begin

foldrVector : for n in (veci′length− 1) downto 0 generate
begin

firstcell : if n = (veci′length− 1) generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n),

input1⇒ z ,
input2⇒ veci (n),
clock ⇒ clock );

end generate firstcell;
othercells : if n /= (veci′length− 1) generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n) ,

input1⇒ tmp (n + 1),
input2⇒ veci (n) ,
clock ⇒ clock );

end generate othercells;
end generate foldrVector;
a⇐ tmp (0);

end block foldrVectorBlock;

In the eventual generated VHDL the veci′length− 1 statements are replaced with the actual corre-
sponding values. Also, the component instantiations might be replaced by an arbitrary concurrent
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statement (usually a function call) when certain built-in functions (a function for which a VHDL
template exists) are used.

. I

In software, and certainly in hardware, integers are usually represented by a fixed number of bits:
Meaning that integers usually have a maximum and minimum value that is allowed by its repre-
sentation. It also means that certain arithmetic operators behave in a special way when the result
of an arithmetic expression exceeds those extremes. e point where an operator causes the result
to exceed an extreme is called an overflow.

e most common behavior performed by an operator when an overflow occurs is to cause a
so-called wrap around, where the value of the result flips to the other extreme and continues the
operation from there. A second, less common behavior also found in hardware, is saturation, where
the resulting value will remain at the extreme of its representation.

For a HDL that wants to have (some) behavioral aspects (instead of being purely structural) it
is important to have support for integers. An important part of this is that you should be able to
specify the range of values an Integer can represent. is range specification is important as it also
determines the ultimate size/structure the hardware working on these integers will have. For the
above reasons CλasH has support for integers with a certain range specification. Again we want to
specify these range details at the type-level, and for the same reasons as we wanted size specification
at the type-level for fixed-size vectors.

Besides being able to specify these ranges, it is also important to see the implications (such as
the behavior that occurs at an overflow) of these representation ranges during simulation. ere
are two possible options for potentially specifying the range of an integer:

• You can specify them directly: e.g. Range -128 To 127

• Define the number of bits by which the Integer is represented: e.g. 8 bits for the range of
values between -128 and 127

In CλasH we will support both ways of specification, each for different purposes. As the overflow
behavior is caused by the number of bits, we have chosen to use the second specification for integers
that will be used in arithmetic operations. Section 3.3.1 goes into detail as to how we describe these
sized integers, how their simulation works and how they, and the operations on them are translated
to VHDL.

Sometimes you want to make sure that an integer does not exceed a certain subrange, even
if it is within their representable range. An example of such an integer is a safe⁹ index into an
array, when the size of that array is not of a power of 2. For these cases we want the simulator
to throw an error when the integer exceeds its specified subrange. Of the two range specification
approaches mentioned earlier, the first approach is the only approach that matches this goal. So,
in Section 3.3.2 we will go into the detail of these ranged integers. We will see how they are
implemented and how they are translated to VHDL.

..  

e familiar  library, whose type-level numerals are used in the TFV library of the last section
also defines the types SizedInt and SizedWord. ey represent signed and unsigned integers of a
certain bit size respectively. SizedNat or SizedNaturalmight have been a better name for the type that
represents unsigned (hence natural) integers. e name SizedWord was however chosen because the
behavior of the operators defined for SizedWord match the behavior of the operators defined for

⁹An index is considered safe when it can not exceed the number of elements in an array.
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the default Haskell Word types: Word8, Word16, etc. e constructors for SizedInt and SizedWord
are shown below:

newtype (NaturalT nT)⇒ SizedInt nT = SizedInt Integer
newtype (NaturalT nT)⇒ SizedWord nT = SizedWord Integer

eir constructors are of course nothing special, however, their run-time behavior and their depen-
dency on the type-level numerals to specify their size are quite interesting. e Num type class¹⁰
is most interesting for these sized integers, as it specifies addition, subtraction and multiplication
operators. Not only is the Num type class important because of these operators, the fromInteger
function is also the general way to construct a SizedInt. is is because the normal constructors for
SizedInt and SizedWord are hidden, as those are unsafe (they would allow us specify integers that do
not respect the bounds set by the size variable). Constructing them with the fromInteger function
allows us to make sure they are constructed correctly, respecting the bounds set by the size variable.
e fromInteger function can be called implicitly, like it happens in the code below, meaning that
our descriptions can remain concise:

let x = (3 :: SizedInt D4)

So what the Haskell compiler actually does ‘under the hood’ is translate the above code to the code
shown on the next page:

let x = (fromInteger 3) :: SizedInt D4

In Code Snippet 3.15 we can see some of the most important functions of the Num instance for
the SizedInt type.

C S . (Num instance for SizedInt).

instance NaturalT nT⇒ Num (SizedInt nT) where
(SizedInt a) + (SizedInt b) = fromInteger (a + b)
negate (SizedInt n) = fromInteger ((n ‘xor‘ mask (⊥ :: nT)) + 1)
fromInteger n
| n > 0 = SizedInt (n .&. mask (⊥ :: nT))
| n < 0 = negate (fromInteger (negate n))
| otherwise = SizedInt 0

On the first line we specify that SizedInt nT is an instance of the Num class, the class that defines
the basic numeric operations such as addition (+), and negate. Even though NaturalT nT was
already part of the context of the SizedInt type, we need to specify this context again, as the mask
function needs to know that it is working with the required type-level integers.

e most important function in the Num instance is the fromInteger function, as that is the
only constructor of SizedInt available to a developer. Let us examine the case for positive integers,
the case guarded by n > 0:

• e (.&.) operator is the bitwise-and operation.

• e mask function takes the type-level integer, nT (which represents the size of the SizedInt),
as its arguments and returns a term-level integer. is term-level integer is the maximum
representable natural value for the specified size nT. For example, if mask is passed (⊥ ::D4),
it returns the integer term 15.

¹⁰e type class system is explained in Appendix D.
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e effect of bitwise and -ing the variable n with the maximum representable natural value, is that
all the bits in n that exceed the maximum representable natural value will be set to zero, thereby
respecting the bounds set by the size of SizedInt.

e observant reader will note that SizedInt is supposed to be a signed integer: When we exceed
half of the maximum representable natural range, an integer should flip to a negative number. And
the above fromInteger function certainly does not make that happen. is is certainly true, however,
we are not really interested in the sign of the integer until we actually print the value. at is why
the show function (which turns a SizedInt into a printable string) makes a call to the toInteger
function, which is defined as follows:

toInteger s@(SizedInt x) =
if isNegative s
then let SizedInt x′ = negate s in negate x′
else x

e isNegative function checks if the sign bit of the sized integer is set, and then calls the negate
function of SizedInt first, followed by a call to negate for the integer x’. is will certainly result in
the correct integer, as the negate function for SizedInt basically does a 2’s complement conversion
of the bit pattern: e negate function first xors with the mask, which is basically the inversion part
of the 2’s complement conversion, and then adds one bit. Proof 3.1 should convince us: we will
add two 4-bit integers, both having the value 7, which should result in a value of -2.

Having covered the most important functionality of SizedInt, we will not elaborate on the
functionality of the SizedWord type, as the implementation of the Num instance of SizedWord is
very similar to SizedInt. e negate function does of course not do a 2’s complement conversion
as SizedWord is an unsigned integer. Because SizedWord can not represent negative numbers, the
implementation of the toInteger function also differs slightly from that of SizedInt.

Resizing Integers

When we look at the numeric operators of the Num class, we soon realize that the results will never
exceed the bounds of their representation. is is usually what we want, but for some cases, like
multiplication, we might want the result to be of a larger representation. For example if we try to
do:

let
x = (7 :: SizedInt D4)

in
(z :: SizedInt D8) = fromInteger $ toInteger $ (x ∗ x)

e variable z will not have the value 49, but the value 1, because the original multiplication, x∗ x,
had an overflow before it was converted to the new SizedInt. Of course, what we had to do was
first turn the variable x to an Integer before multiplying it. But then we get such intricate code as:

(z :: SizedInt D8) = fromInteger $ (toInteger x) ∗ (toInteger x)

Precisely for these situations, a resize function function was added. e resize function does exactly
what the name implies, it correctly resizes the argument to the type of the result. e behavior
of the resize function for SizedWord is to zero-extend, whilst for SizedInt, the resize function will
sign-extend. e resize function works quite intuitively, for example, we would rewrite the above
multiplication as such:

(z :: SizedInt D8) = (resize x) ∗ (resize x)
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P . (toInteger ((7 :: SizedInt D4) + (7 :: SizedInt D4)) ≡ -2).

(7 :: SizedInt D4) + (7 :: SizedInt D4)
≡ definition of (+)
fromInteger (7 + 7)
≡ definition of (+)
fromInteger 14
≡ definition of fromInteger
SizedInt (14 .&. mask (⊥ :: D4))
≡ definition of mask
SizedInt (14 .&. 15)
≡ definition of .&.
SizedInt (14)
negate (14 :: SizedInt D4)
≡ definition of negate
fromInteger ((14 ‘xor‘ mask (⊥ :: D4)) + 1)
≡ definition of mask
fromInteger ((14 ‘xor‘ 15) + 1)
≡ definition of xor
fromInteger ((1) + 1)
≡ definition of (+)
fromInteger 2
≡ definition of fromInteger
SizedInt (2 .&. mask (⊥ :: D4))
≡ definition of mask
SizedInt (2 .&. 15)
≡ definition of .&.
SizedInt (2)
negate 2
≡ definition of negate
− 2

Q.E.D.

Translating to VHDL

e VHDL translation for the SizedInt and SizedWord type, and the corresponding numeric op-
erations: (+), (−), negate and (∗), are very simple. at is because VHDL already has the corre-
sponding signed and unsigned type. And the corresponding numeric operations are also defined
for these types, except for the negate function on unsigned. For this reason, the negate function of
SizedWord throws an error when called. A preferred solution would of course be to not define the
negate function at all for SizedWord. Sadly so, it is not possible to hide class functions in Haskell,
meaning that we can’t both let SizedWord be an instance of Num and hide the negate function. So
throwing an error is the small sacrifice we have to make for getting access to the other numeric
operators.

As far as the resize function goes, we call the respective VHDL resize function for unsigned and
signed, which behave the same as their Haskell counterparts: they zero and sign extend respectively.
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..  

Until now we have mostly talked about sized integers. ese sized integers can of course also be
used to represent ranged integer, having of course only ranges that are a power of two. So the
question is: Why would we want integers with an arbitrary range specification? Especially when
we consider that the actual hardware, which is binary, can only physically manifest integers with
ranges that are a power of two. we will see a convincing use case as to why CλasH should support
type-level ranged integers.

Use Case: 10 x 8-bit Memory

Suppose we want a 10 x 8-bit Random-Access Memory (RAM), in which we want to store 8-bit
integers. e read and write address will have to be at least 4 bits wide, so already we can see that
we can give no guarantees that the address value will stay within the limits of the memory. Also,
the element access function, (!), which we would use to specify the read functionality of the RAM,
had¹¹ the following type:

C S . (e original index operator (!)).

(!) :: (PositiveT s
, NaturalT i
, (s > i)∼True)⇒ TFVec s a→ i→ a

is poses a big problem, the function expects a type-level integer, because it needs to know
that the indexing argument does not exceed the size of the vector. A first attempt to specify the
read logic of the RAM is seen on the next page:

data_out = reifyNaturalD (toInteger read_address) (λi→ ram ! i)

A piece of code we would think should be simple, the read functionality of a RAM, turns out
to be much more intricate than hoped for. What is even worse, the code will not even com-
pile. Let us start with the unfamiliar reifyNaturalD function. is function is implemented in a
Continuation-Passing Style (CPS) fashion, meaning that it passes the result of its calculation to the
second argument. What reifyNaturalD does is convert an integer term to the equivalent type-level
integer. So what happens in the above piece of code is that the reifyNaturalD function translates
the read_address variable to the type-level equivalent, which is then passed to the (!) function to
access that position in the vector.

You can see why we would assume the code works, it gives the (!) function the type-level integer
it wanted. However, the only guarantee reifyNaturalD can give at compile-time is that it gives back
a type-level natural number¹², but it can (of course) not say which instance exactly. As such, the
type-checker will complain that it can not verify that the index is indeed smaller than the size of
the vector.

e problem is that the restriction imposed by the indexing operator, (!), is too strict. It
demands to know the exact instance of the type-level integer. However, the only static guarantee
that we should care about is: ”Is the static upper bound of this integer larger than the highest index
position of the vector?” If not, than we do not care which exact instance it is. Now we could of
course, using only the types we currently have at our disposal, change the type signature of the
indexing operator (!) function into something like the code shown on the next page.

¹¹is use case actually resulted in the change of the (!) and replace functions.
¹²Or gives an error when the integer is smaller than zero
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C S . (Index operator (!), using SizedWord as index parameter).

(!) :: (Positive s
, NaturalT i
, (s ≡ (Pow2 i))
)⇒ TFVec s a→ SizedWord i→ a→ TFVec s a

In which we use a SizedWord type as the index parameter, and Pow2 i operator is the type-level
equivalent of 2i. But then, we would never be able to use this indexing operator on a 10-bit vector:
We need 4 bits to represent the number 9, but 24 = 16 is larger than 10.

e introduction of RangedWord

e solution to this problem are of course arbitrary ranged integers. For example, a simple solution
for the 10 x 8-bit RAM use case are indexes that are natural numbers with only an upper bound,
specified as such:

newtype (NaturalT upper)⇒ RangedWord upper = RangedWord Integer

We would then change the indexing operator (!) to have the following type signature:

C S . (e current implementation of the Index (!) operator).

(!) :: (PositiveT s
, NaturalT u
, (s > u)∼True)⇒ TFVec s a→ RangedWord u→ a

e implementation of the Num class for the RangedWord type is not as interesting as that of
SizedInt and SizedWord type. Again, the unsafe constructor exposed by the newtype declaration
is hidden, and the fromInteger function is used to safely construct the RangedWord. What the
fromInteger function does for the RangedWord type is throw an error when the integer passed to it
as its argument exceeds the implicit minimum range of 0 or the maximum bound specified by the
type.

What is interesting are the conversion functions between RangedWord and SizedWord. Using
these conversion functions, a developer can still exploit the overflow behaviour of SizedWord, but
guarantee the range safety offered by RangedWord. Of course, there are some limitations: e
largest being that when converting from SizedWord to RangedWord, then the upper bound of a
resulting RangedWord has to be of a power of two, minus one, as that is the only static guaran-
tee the conversion can give. e function that converts a RangedWord to a SizedWord is seen in
Code Snippet 3.19, and the function that converts a SizedWord to a RangedWord is seen in Code
Snippet 3.20.

C S . (Convert RangedWord to SizedWord).

fromRangedWord ::
(NaturalT nT
, NaturalT nT′

, ((Pow2 nT′) > nT)∼True
, Integral (RangedWord nT)
)⇒ RangedWord nT→ SizedWord nT′

fromRangedWord rangedWord = SizedWord (toInteger rangedWord)

Most of the type context should be familiar; the line, ((Pow2 nT′) > nT)∼True, asks the type-
checker that the upper bound (nT) of the RangedWord type fits in the maximum representable value
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(Pow2 nT′) of the SizedWord type. e context, Integral (RangedWord nT), has to be specified so
that type-checker knows that the RangedWord type has a toInteger function.

C S . (Convert SizedWord to RangedWord).

fromSizedWord ::
(NaturalT nT
, Integral (SizedWord nT)
)⇒ SizedWord nT→ RangedWord ((Pow2 nT)− D1)

fromSizedWord sizedWord = RangedWord (toInteger sizedWord)

e functionality, and the type-signature, of the above conversion should be straightforward for the
reader. Also here, the context, Integral (SizedWord nT), has to be specified to let the type-checker
know that the SizedWord type has a toInteger function.

Translation to VHDL

VHDL has support for natural numbers (the natural type) that have a certain range. However,
we do not translate RangedWord to this VHDL type natural. e underlying reason for this is
explained in Chapter 5. So what we do, is translate the RangedWord type and all its numeric
operators in the same way as the SizedWord type: We translate to the VHDL unsigned type. is
is a sound translation, meaning that we do not sacrifice any type safety, as we can already check for
any range errors when we simulate a design in Haskell.
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C S: R 

e development and implementation of the CλasH compiler was an incremental process, in which
new functionality was added piece by piece. Usually, a small toy code example was created to
determine if a newly added piece of functionality was behaving correctly. However, we never tested
the compiler with a relatively large hardware design.

We therefore did this case study, to examine if CλasH can do more than toy examples, and see
if it was ready for real hardware designs. e piece of hardware designed and implemented is a
reduction circuit. It was originally designed in the context of Sparse Matrix Vector multiplication
(SM×V), but the circuit can be used for other purposes as well. A reduction circuit reduces all the
values in a row to a single value through a binary operation, and for this particular exercise we use
summation.

When we deal with integer values, this circuit can be quite straightforward. We use a single
integer adder with an accumulator register, and we will just sum the values of each row by streaming
the rows through this circuit one by one. When the values of the rows to be reduced are floating
point values there are several hardware specific problems we need to solve. Most floating point
adders are pipelined circuits (to achieve a reasonable clock speed), meaning that the result of the
operation is delayed by multiple cycles. We can not take the same approach as we did with integer
values: If we would try to stream the values through such an accumulation circuit we risk adding
the values of multiple rows together, as values of a new row would enter the floating point adder
before the values of the previous row exited the pipeline.

We can not stall the reduction of a new row until the last value of the previous row is flushed
from the pipeline as we risk needing an infinitely large input buffer. e speed by which we can
reduce all the rows in a matrix would also significantly degrade. For the above reasons special
algorithms are used to keep the floating point adder pipeline as filled up as possible, while still
keeping track to which row the values belong.

e specific reduction circuit design implemented in this chapter is from the work of Gerards
[13]. Figure 4.1 shows the basic components of the design: e input buffer is a First In, First
Out (FIFO) buffer which is special in the sense that it can release between 0 and 2 values.

When a partially reduced value is at the end of the pipeline, while other partial results are still
in the pipeline, then that value needs to be stored in special partial results buffer so that they can
be reduced further later on. We have to store these partial results until the complete row has been
reduced; when the row has been completely reduced it can be flushed towards the output.
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Figure 4.1: Reduction Circuit

e part of the design that is not shown in Figure 4.1 is the control logic that is needed to have the
different parts work together. is control logic needs to:

• Keep track to which rows the values in the pipeline belong to.

• Determine from which source values should enter the adder pipeline next: from the input
buffer, the partial results buffer, and/or the top of the adder pipeline.

• Determine if a row is completely reduced and needs to be purged from the partial results
buffer.

e problem is complicated even more by the fact that the rows can have different lengths, and
that some rows have more elements than that there are pipeline stages in the floating point adder.
A reader in search of more detail about about both the problem and the architecture used to solve
this problem is referred to the master’s thesis of Gerards [13].

e focus of the reduction circuit design lies mainly on the control logic, not the floating point
adder itself. We therefore replace the floating point adder in the design by a much simpler datapath:
an integer adder connected to a shift register. is is a valid replacement, as far as the control logic
is concerned, as the external timing behavior of shift register and the pipeline of the floating point
adder are the same: e output of the computation is delayed by several clock periods.

e ultimate design of the reduction circuit does not demonstrate the merits of functional
HDLs very clearly. is is largely due to the fact that the design was already completely described
in the thesis of Gerards [13]. e merit of HDLs like CλasH is that the designs described in
these languages allow for a high degree of abstraction and parameterization, due to such features
as polymorphism and higher-order functions. ese features aid a designer in dealing with the
complexities when a circuit design is far from finished and there are still many uncertainties. As the
architecture of the reduction circuit was already finalized, the implementation in CλasH resembles
the implementation a seasoned designer would write using VHDL or Verilog; be it that CλasH
might be less verbose than VHDL. at being said, a novice designer might have an easier time
implementing the circuit in CλasH due to this language being less verbose than VHDL or Verilog,
and that a design that can be compiled is always synthesizable.

Speaking of verbosity and conciseness, the fixed-size vectors found as they are currently imple-
mented in CλasH put a strain on both concepts when dealing with certain parts of the architecture,
especially the input buffer of the reduction circuit. at is why we will discuss the design of the in-
put buffer in further detail. e reader should note that knowledge of the State newtype is assumed;
readers unknown with the use of this newtype are referred to the thesis of Kooijman [26].
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. T  

e input buffer of the reduction circuit is a special type of FIFO buffer, that can shift either 2,
1 or 0 values out of the buffer. is specialized FIFO was needed so that the floating point adder
could read 2 values out of the input buffer at once, without delay. Using dynamically sized lists
(which are unsupported in CλasH), you might describe such a buffer along the lines of the code
below, where NotValid indicates that a memory Cell is invalid:

C S . (Purely functional design of a FIFO buffer).

fifoBuffer (State mem) (input, shift) = (State mem′, out1, out2)
where

out1 | length mem ≡ 0 = NotValid
| otherwise = head mem

out2 | length mem ≡ 1 = NotValid
| otherwise = head (tail mem)

mem′ = drop shift mem ++ [input ]

e above can currently not easily be translated to the fixed-size vectors like we have them
in CλasH: vectors that have a static size indicated at the type-level. In the above code the drop
function trims a variable amount from the head of the list mem. e input is concatenated to his
trimmed list. is type of functionality can not be specified with the fixed-size vectors in CλasH,
as the result vector mem’ needs to be assigned a vector with a static length. Maybe future versions of
CλasH will support bounded vectors (vectors with a static upper bound) or even dynamically sized
lists. ese types of functionality is what we would call behavioral aspects (as a structure will have to
be inferred) of the language, and would most likely complicate the design of the CλasH compiler
significantly. So, for the time being, bounded vectors and dynamic lists are left as possibilities for
future work.

At the moment however, we as designers need to find our own solutions to mimic the behavior
of dynamically sized lists. What seems to a cheap solution to our problem is the use of a write
pointer. is write pointer points to the first open spot in the FIFO buffer. e result design,
which is in the old design of the input buffer, is shown in Code Snippet 4.2.

C S . (CλasH design of a Shift buffer (FIFO)).

fifoBuffer (State (Fifo {. .})) (inp, shift) = (State (Fifo {mem = mem′

, wrptr = wrptr′
})

, out1, out2
)

where
-- Increase or decrease write pointer according to value of ’shift’
wrptr′ = wrptr− shift + 1
-- Write input value to the free spot
mem′′ = replace mem wrptr (Valid inp)
-- Flush values at the head of fifo according to value of ’shift’
mem′ | shift ≡ 0 = mem′′

| shift ≡ 1 = (tail mem′′)<+NotValid
| otherwise = ((tail (tail mem′′))<+NotValid)<+NotValid

-- Output the last two values of the buffer
out1 = head mem
out2 = head (tail mem)
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Functions like head and tail should be familiar. So let us examine the unfamiliar ones. e
replace function does exactly what it name suggests, it replaces a value in a vector with a new value;
in the case of the input buffer it places the new input value at the spot indicated by the write
pointer. e snoc (<+) operator, attaches an element to an existing vector on the right side; in this
sense it is the opposite of the more familiar cons (+>) operator which attaches an element to the
left of an existing vector. e first line of the where-clause, wrptr′ = wrptr − shift + 1, shifts the
write pointer either one position to the left, one position to the right, or does not change its value
at all, depending how many values are shifted out of the input buffer. We can also see that invalid
elements (NotValid) are shifted into the buffer when values are shifted out of the input buffer; this
way, the size of the storage vector stays the same.

After some tests we noted that the shift buffer design of Code Snippet 4.2 is faulty: e buffer
can never be completely filled without raising an error. When the buffer is completely filled, the
write pointer wrptr will have a value that is equal to the maximum number of elements in the
buffer. And if the shift variable is 0 at such a time, the computation wrptr− shift + 1 will give an
error. at is because the replace function demands that the write pointer is of type RangedWord
with a static upper bound that does not exceed the highest index of the vector. So when the shift
variable has the value 0, the above computation will exceed the upper bound, and an exception
will be raised.

A possible solution is to turn the write pointer to a SizedWord, and converting it to a Ranged-
Word again when we use it as the indexing parameter for the replace function. However, this will
limit the design of the FIFO buffer to have a length that is a power of two. We had a different
solution in the old design: As we know that the minimum required length of the input buffer for
this reduction circuit design is α + 1, where α is the pipeline depth, we will just make the size of
the input buffer α + 2. is way the write pointer will never go out of bounds. Even though one
memory location will always go unused, it is a better solution than increasing the size of the design
to be a power of two.

C S . (CλasH design of a Circular buffer (FIFO)).

fifoBuffer (State (Fifo { . .})) (inp, shift) = (State (Fifo {mem = mem′, rdptr = rdptr′
, wrptr = wrptr′, count = count′
})

, out1, out2
)

where
-- Update the read pointers and element counter according to value of ’shift’
(rdptr′, count′) | shift ≡ 0 = (rdptr , count + 1)

| shift ≡ 1 = if rdptr ≡ max then (0 , count ) else
(rdptr + 1, count )

| otherwise = if rdptr ≡ (max− 1) then (0 , count− 1) else
if rdptr ≡ max then (1 , count− 1) else

(rdptr + 2, count− 1)
rdptr2 = if rdptr ≡ max then 0 else rdptr + 1
-- Write input to first free spot, update free spot pointer
mem′ = replace mem wrptr inp
wrptr′ = if wrptr ≡ max then 0 else wrptr + 1
-- Validity of the output is based on the number of elements
out1 | count ≡ 0 = NotValid

| otherwise = (Valid (mem ! rdptr))
out2 | count 6 1 = NotValid

| otherwise = (Valid (mem ! rdptr2))
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e current solution uses a circular buffer (Code Snippet 4.3), employing two read and one
write pointer. is way we can add explicit overflow to the pointers, meaning that the type of
the pointers can still be of RangedWord, without running into the unwanted overflow in the old
design. In Code Snippet 4.3, the max variable is the maximum buffer index, and is defined outside
of the circuit description of the FIFO buffer. We can also see that the design uses a counter, the
variable count, that counts the number of valid elements in the buffer. is count variable is used
to indicate if the values at the output of the FIFO buffer are valid values.

Using a circular buffer we have a design which probably uses fewer resources than the previous
buffer design, as the old design, having a large shift register, probably used more multiplexers.
However, the logic generated for the circular buffer might have a lower clock speed than the logic
generated for the shift buffer.

. R

As the current incarnation of the CλasH compiler is certainly not optimized for either speed or
resource usage, there is no point in discussing these aspects of the reduction circuit design in great
lengths. We will however mention them briefly at the end of this section. What is worth elaborating
is the design process of the reduction circuit, and how it helped finding many bugs in the CλasH
compiler.

So first of all, the original architecture of the reduction circuit described by [13] was already
there before work on CλasH started. Not only that, the functional description of the circuit was
also already designed before real work on CλasH was started. So not only was it a nice use case
to see what of kind descriptions CλasH can currently handle, it has also been sort of a guiding
example of what the compiler should handle. During the implementation of CλasH we had to
update the design of the reduction circuit to deal with certain language specifics, such as the State
newtype and the hardware specific types such as the RangedWord type. e biggest update being
of course moving from dynamically sized lists to fixed size vectors. Actually, the restrictions of
physical hardware were recognized before the fixed size vectors were implemented in CλasH: So
the actual description of the reduction circuit was updated to reflect these restrictions even before
the TFV library was implemented.

e reduction circuit proved to be a good use case as far as compiler stability goes, allowing us
to catch many bugs in the State handling parts of CλasH that did not show up in our toy examples.
e final design was tested in the Haskell simulation environment using randomly generated test
input that constructed rows of random lengths. e output of the reduction circuit was machine-
checked against the output of a simple Haskell equation that also reduced the rows: e output
of the circuit was equivalent to that of the Haskell equation indicating that our design behaved
correctly under simulation.

After the confirmation that the design behaved correctly in the Haskell simulation, the CλasH
compiler translated the design to VHDL and also automatically generated a testbench that uses
the same input values as those in the Haskell simulation. e automated testbench generation
was another fruit that grew out of the reduction circuit use case: Determining the correctness of
the generated VHDL code by manual code inspection was infeasible for such a large design. So
to acquire confidence in the correctness of the generated VHDL, we needed to perform a VHDL
simulation run of the generated design to determine that the generated design, given the same
input, had the same external behavior as the CλasH design. e reader can find more information
about the automated testbench generation in Appendix B.

e VHDL that was generated by the CλasH compiled without errors or warnings, and
machine-checking the output of the VHDL testbench against the output of the Haskell simulation
showed that the external behavior of the CλasH design and the generated VHDL were equivalent
(at least for the specified test input). Also, the VHDL synthesis tool compiled the design without
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CλasH VHDL FP Adder

CLB Slices 1816 3556 n/a
MHz 106 200 253
Block RAMs 2 9 0
DSP48s 0 3 3
Function Generators (LUTs) 3631 2927 1220
Dffs or Latches 2192 3437 1139

Table 4.1: Design characteristics Reduction circuit

errors or significant warnings, indicating that the design of the reduction circuit can be turned into
actual hardware.

..  

For the sake of completeness, this subsection goes into the details of the synthesis results of the
reduction circuit. It has to be noted that the CλasH compiler is in no way optimized for speed or
resource usage. e design was synthesized for a Xilinx Virtex-4 4VLX160FF1513-10, the same
FPGA that was used by Gerards [13]. e pipeline depth of the adder is 12, and the circular buffer
was used as the input buffer for the design. In Table 4.1 we can see the resource usage of the
CλasH design and the optimized VHDL design of Gerards [13]. e numbers of the optimized
VHDL design can not really be used for comparison with the CλasH design for two reasons: e
VHDL design uses a real pipelined floating point adder, whose resource usage is much higher than
the integer adder used in the CλasH design. Table 4.1 therefore includes the resources used by a
stand-alone pipelined floating point adder, to give some indication as to how much the floating
point adder affects the resource usage of the reduction circuit by Gerards [13].

Secondly, because the CλasH design uses an integer adder, the delays between input buffer and
adder and between adder and output buffer are lower than if a pipelined floating point adder was
used. is means that the maximum clock speed of the CλasH design would probably be lower if
a floating point adder was used.

Still, Table 4.1 shows us that the number of FPGA resources used by the CλasH design are
in the same order as the number of resources used by the hand-coded VHDL¹, as such, we are
confident that this first-generation CλasH compiler is indeed well behaved.

¹Even though the the number of used CLB slices for the FP Adder is unknown, and as such can not be deducted from
the resources used by the VHDL design, the other resource usages do suggest that the CλasH design and the VHDL have
a resource usage that is in the same order.
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D

e use case in the previous chapter certainly shows that CλasH can be used for more than just
toy examples. It might not have the same performance as hand-coded VHDL, but the results are
certainly reasonable. However, that does not mean that we, as the designers of CλasH, are entirely
satisfied with the current implementation. is chapter discusses some of the design decisions
made, and what the implications are for the current state of CλasH.

. C -    

CλasH supports higher-order functions in many cases, but not in the general case. e cases
where CλasH certainly does not support general high-order functions, are those where fixed-size
vectors are involved. e reason behind this, is that templates (fixed translations) are used when
we translate vector functions. As an example we will examine the map function, which has the
following signature:

map :: (a→ b)→ Vector s a→ Vector s b

e type variable b can be of any type, which is what we want, so it can even be (a→ a), which it
will have in the example below:

let (v :: Vector D4 Bit) = copy Low
in andv = map (.&.) v

e (.&.) function is the bitwise and operation in Haskell, meaning that it takes two arguments.
So, what this means is that is that andv has the type Vector D4 (Bit→ Bit), as the and operations
still expects an argument. is code example is not translatable in CλasH, as we always translate
the map function through a VHDL template. However, all VHDL function templates expect that
both the input and output signals are of a primitive types, to which (a→ a) does not belong.

What seems to be a general solution for this problem is for the normalization transformations,
which are described by Kooijman [26], to have some kind of knowledge about the built in func-
tions, such as map. is way, if the normalization process notices that a vector operation gives a
result that is a function type, it can unwrap the vector to separate functions. It also has to do some
bookkeeping in case an other function tries to use one of these unwrapped functions. All this is far
from trivial, and the details should be investigated in future work.

45
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. S  L  S

As we have seen in the introduction and the use case, hardware descriptions in CλasH are basically
descriptions of Mealy machines, where state and logic are separated into two different entities.
And even though we use functions that operate on the state variables, when we take the Mealy
machine perspective, we are actually performing those operations on the output signals of the
memory elements. When we translate our description to VHDL, we keep this separation very
much intact. All the operation are translated to parallel signal assignments, and the state update is
a single sequential signal assignment along the lines of Code Snippet 5.1.

C S . (VHDL State Update).

state : process (clock)
begin
if rising_edge (clock) then

statesignal⇐ newstate;
end if ;

end process state;

is approach works well for most functions, except for the replace function that we find in
the vector library. e signature of this replace function is:

replace ::
(PositiveT s
, NaturalT u
, (s > u)∼True)⇒ TFVec s a→ RangedWord u→ a→ TFVec s a

So, this function takes an entire vector as an input, and also has an entire vector as its output. We
can think of many ways to translate this function to VHDL, but in CλasH we have chosen to do
it like this:

function replace (veci : array_of_a;
ix : unsigned ;
el : a )

return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
res := veci;
res (to_integer (ix)) := a;
return res;

end;

Why we use unsigned instead of natural as the indexing parameter is something that will be dis-
cussed in Section 5.3. Now, this function does exactly what you want it to do for combinatorial
logic: from a vector of signals it replaces the signal at position ix with the signal a. However, when
you want to use this function as the write logic for a memory element such a RAM, then almost
any VHDL synthesis tool will have troubles recognizing the above as the write logic for a RAM.
And indeed, when we apply the replace function to a state variable, most synthesis tools will lie
down a whole set of multiplexers connected to a set of memory elements, e.g. flip-flops. Instead
of the blockRAM you might be hoping for.

If we were to write a special instance of the replace function for stateful variables, we would
probably design something along the lines of Code Snippet 5.2.
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C S . (Replace for state variables).

replace : process (clock)
begin
if rising_edge (clock) then

veci (to_integer (ix))⇐ a;
end if ;

end process state;

Which, in most cases, will be turned into some type of RAM by the VHDL synthesis tools;
exactly what we want. Sadly so, it is not possible to generate a function like the above in the current
architecture of the CλasH compiler. All operations are translated to concurrent signal assignments,
and as such, all operations are translated in the same way, irrespective whether they work on stateful
variables or on normal variables.

..   

e translation of the replace function for state variables does not lead to any problems with the
functionality of the generated VHDL; its behaviour is equivalent to that of the Haskell function.
However, when we look at efficient use of hardware, especially on FPGAs, then the hardware
inferred by the synthesis tools for the VHDL in Code Snippet 5.2 is certainly more desirable. e
reason being that, if combined with the indexing function, (!), it can be recognized by VHDL
synthesis tools as a piece of RAM.

So, to give the designer at least the option to use any of the potential RAM resources on an
FPGA, we have to make an extra primitive that has a direct translation to VHDL. And of course
we need to define a Haskell function as well, so that we may simulate the RAM primitive. We can
see the Haskell function for this blockRAM primitive in Code Snippet 5.3. It is parametric in both
size and element type.

C S . (BlockRAM - Haskell Specification).

type RAM s a = Vector s a
type MemState s a = State (RAM s a)
blockRAM ::

(PositiveT s
, NaturalT (s−D1)
, (s > (s− D1))∼True
)⇒ (MemState s a)→ a→ RangedWord (s−D1)→ RangedWord (s− D1)→ Bool→

(MemState s a, a)
blockRAM (State mem) data_in rdaddr wraddr wrenable = (State mem′, data_out)
where

data_out = mem ! rdaddr
mem′ = if wrenable then

replace mem wraddr data_in
else

mem

Again, we have to specify some extra context, because, as explained earlier in Chapter 3, arith-
metic relations can not be deduced in the current type system. We have to specify NaturalT (s−D1)
because the index parameter needs to have a natural upper bound, and it cannot deduce that sub-
tracting 1 from the positive number s results in at least a natural number. Also it can not deduce
that s - 1 is smaller than s, thus we need to supply the context (s > (s − D1))∼True. e block-
RAM function itself is quite straightforward: the output, data_out, is the value of the RAM at the
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read address (rdaddr). e RAM is updated at the write address (wraddr), with the input value
(data_in), if the write enable signal (wrenable) is true.

Many VHDL synthesis tools describe VHDL templates for RAM memories, that is, code snip-
pets of VHDL that are recognized by the synthesis tools as descriptions of a RAM. In CλasH we
translate to a very common template; the relation with the Haskell code of Code Snippet 5.3 should
be obvious. e VHDL template is seen in Code Snippet 5.4.

C S . (BlockRAM - VHDL Template).

blockRAM : block
signal ram : array_of_a_with_length_s;

begin
data_out⇐ ram (to_integer (rdaddr));
updateRAM : process (clock)
begin
if rising_edge (clock) and wrenable then

ram (to_integer (wraddr))⇐ data_in;
end if ;

end process updateRAM;
end block blockRAM;

Both the Haskell simulation code and the VHDL template are really quite intuitive, and we
hope that future versions of CλasH will no longer need a primitive and could just turn the Haskell
code (Code Snippet 5.3) into VHDL code (Code Snippet 5.4) that can be synthesized to a RAM.
Also note that, if required, the addition of a dual-port blockRAM primitive to a future version of
the CλasH compiler is trivial.

. H  L, H  S

As we saw in the previous section, when we discussed the VHDL template for the replace function,
the CλasH RangedWord type is translated to a VHDL unsigned type. Both seasoned and beginning
VHDL programmers might wonder why we do not use a natural, as it allows us to specify a repre-
sentable range, which of course corresponds more closely with the RangedWord type. e reason
is that the Haskell simulation results will not correspond with the VHDL simulation results if we
use the natural type. It even goes so far, that the VHDL simulation will give us a fatal error, whilst
the Haskell simulation runs smoothly. e cause of this discrepancy between simulation results
are the different evaluation strategies applied by Haskell and VHDL: Haskell is lazy, and VHDL
(Hardware) is strict. e best way to show this difference is with an example. Code Snippet 5.5
shows a write pointer calculator for a FIFO buffer with five spaces. e write pointer points to the
first free space in the buffer, when it is zero, the buffer is full.

C S . (Write pointer circuit).

writePointer ::
State (RangedWord D4)→
SizedWord D2→
(State (RangedWord D4), RangedWord D4)

writePointer (State wrptr) enable = (State wrptr′, wrptr)
where

wrptr′ | enable ≡ 0 = wrptr− 1
| enable ≡ 1 = wrptr
| otherwise = wrptr + 1
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e circuit works as follows: when the enable signal is 0, an element is added to the FIFO,
so the write pointer is decreased. When the enable signal is 1, nothing is done to the FIFO, so
the write pointer stays the same. And, when the enable signal is 2, an element is released from
the FIFO, so the write pointer is increased. Now, the context for this example is that the FIFO
is full, which means the write pointer is set to zero. Also, no value is about to enter the FIFO, so
the enable signal is set to one. Now, because Haskell is lazy, only the case enable ≡ 1 = wrptr
is evaluated. e write pointer stays within the boundaries of zero and four, so no exceptions are
thrown. Hardware however, is completely strict, and so is VHDL. So, when we translate the code
from Code Snippet 5.5 to VHDL, each case is turned into a separate signal assignment, which
are then fed into a multiplexer. is multiplexer will, according to the value of enable, route the
correct assignment to the wrptr′ signal.

Where the signal assignments in the Haskell simulation did not go out of their bounds in
simulation, some of the signal assignments in VHDL will certainly go out of their bounds. And,
in the case that they are specified to be of type natural, will throw a fatal exception when that
happens. So in the earlier explained case, where wrptr has the value: 0 and enable has the value: 1,
the wrptr− 1 expression will be evaluated in VHDL. e result of this assignment is: -1, which is
below the lower bound of a natural. Even though the invalid output of this assignment will never
be routed to the wrptr′ signal, the VHDL simulator will throw a fatal error.

To avoid this discrepancy between the Haskell and VHDL simulation, the most sound solution
is to use unsigned for the VHDL representation of RangedWord, because the external behavior of
the design can be correctly simulated in Haskell. So we know, in the above case, that wrptr′ will
never get an out of bounds value in real hardware, because we didn’t see it in the simulation either.
e only downside of the current solution is of course that we lose the safety of the bounds in the
VHDL description. But then again, this is only a problem if we want to incorporate the generated
VHDL in a larger, hand-coded, design.
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is thesis shows that the expressivity of functional languages, Haskell specifically, can be used for
hardware descriptions. e CλasH compiler can now translate a certain subset of Haskell, with
much room to grow. At some point we will have to draw a line and say which parts of Haskell
we can translate to hardware, and which parts we can not. For the time being though, the focus
should be more on being able to translate parts of Haskell of which we know that they can be used
for hardware descriptions.

is thesis explored the use of Haskell’s type system for hardware description. And even though
it did not have all the type-level programming facilities for general recursion over our fixed-size
vectors, it is certainly powerful enough to meet most of our requirements.

e major contribution of this thesis is the TFV fixed-size vector library that acts as the
back-end of the current CλasH Vector type. Besides being used for CλasH hardware descriptions,
the library can of course be used in other projects as well. All the functions defined in the TFV
library have a corresponding translation to VHDL, which are described in Appendix A. is thesis
has also added functionality to the existing  library, adding the RangedWord type, and adding
functionality to the existing SizedInt type and SizedWord type.

e use case of Chapter 4, the reduction circuit, shows that CλasH can be used for more than
just trivial/toy designs. e simulation results from the generated testbench (automated testbench
generation is discussed in Appendix B) are equivalent to the simulation results in Haskell, indicating
that the generated VHDL behaves as expected. Not only that, VHDL synthesis tools compile the
designs without errors or warnings, indicating the design will most likely function correctly when
placed on an FPGA.

A minor contribution of this thesis is to make the CλasH compiler more than just an obscure
research project. Some effort has gone into making the compiler easy to install and easy to use.
For example: there is now support for the GHC Annotation system, a system that is currently
only implemented in the development version of GHC, but will be available in the stable versions
starting at version 6.12.1. With support added for this annotation system, a designer can annotate
functions in his design, indicating that it is either the top-level entity, the initial state or the test
input. Because of the support for the annotation system, the user no longer has to specify the
top-level entity, etc., for every run of the compiler¹: Having annotated certain functions, the user

¹e top-level entity name can also be passed as a string, in which case the top-level entity annotation will be ignored.
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now only has to tell CλasH compiler which file to translate, and the annotations will guide the
compiler to the top entity.

Also, CλasH can be compiled and packaged as a separate library, ready to be installed in any
existing Haskell system. Not only that, it can be packaged as part of the Haskell flagship compiler
GHC, so that new users can start with CλasH straight out the box. Added to this package is
GHC compiler which is customized with a –vhdl flag to quickly translate a file to VHDL. Also the
GHC interpreter (GHCi) is expanded with the the :vhdl command, that translates currently loaded
modules to VHDL. So, once a user has finalized his circuit design, remaining in the environment
in which he simulated and tested his design, he can now translate the design to VHDL in that
same environment.

. F W

As with most master theses, the work done in this project is far from finished and leaves much
room for future work. e CλasH language as a whole should be able to serve as a good basis for
much research and many assignments to come.

..  

At the moment, only a limited subset of Haskell is translatable, and a crucial aspects of functional
programming, recursion, is missing. However, as the reduction circuit shows, lacking recursion
does not mean we can not not describe real world circuits. Not having recursion does however
mean that we can not, for example, describe parametric tree structures.

e reason we lack recursion is two-fold: e first reason is that the normalization process can
not do compile-time evaluation, and as such can not determine when the recursion step should
stop. e thesis of Kooijman [26] explains this in greater detail. e second reason is that, unless
we resort to cumbersome proof builders, general recursion and type-level programming can not
be properly combined in the Haskell’s current type system. Something we witnessed during the
exploration of the GADT-based fixed-size vectors in Chapter 3.

New source language

A possible solution would be to switch from the current source language Haskell to a source lan-
guage that is also a functional language but has real dependent types. is work would fit well
in a master’s thesis where a student would investigate dependent type systems, and languages that
have them. He or she should then try to implement non-trivial recursive vector function in those
dependently typed languages, and determine which of those functional languages would be a good
candidate as the new source language for CλasH.

Type level invariants

e work of Schrijvers et al. [36] describes how type-level invariants can be implemented and
used within Haskells type system, they also mention that they have implemented these type level
invariants in a custom version of GHC. ese invariants allow a developer to specify proofs for
such things as the commutativity of addition at the type-level, instead of using a GADT as we saw
in Chapter 3. However, a user still has to specify when these proofs have to be used. A possible
assignment would be to investigate the use of these type-level invariants in greater details, and
determine how the current VHDL translator should handle (ignore) them.
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.. :     

In the case study of Chapter 4 we saw that the description of the input buffer using lists was
concise, straightforward and easy to understand. e problem was of course that the drop function
changed the length of the list by a variable amount: either by zero, by one or by two elements.
It is impossible to write such a function with fixed-size vectors, so what we did was introduce a
shift register combined with some write functionality. e other option that was presented, was
a circular buffer. Both of these options are fairly standard in hardware, not only that, there are
probably not a lot of other options to mimic the behavior of dynamic lists.

As it seems there are not many other options to mimic the behavior of dynamic lists, it might
be possible to automate the process of converting a set of operations that work on a list to a set of
operations that update the read and write pointers of either a circular or shift buffer. A possible
approach is to use Template Haskell to analyze the AST of the functions and determine the read
and write patterns of the dynamic lists and create corresponding read and write pointers. Such an
analysis would probably not work for general the general case, but still a (small) subset of functions
working with lists could be translated to a fixed-size vector equivalent.

..   

As explained in an earlier subsection it is currently not possible to make a recursive description
in CλasH. However, there are techniques to eliminate the recursive calls while still preserving
the meaning of the recursive description, thus allowing certain recursive hardware descriptions
in CλasH. e technique discussed and explored here is loop unrolling. Specifically: static loop
unrolling of number-guided recursive functions. What we mean by static is that the loop unrolling
happens at compile-time, which is important for CλasH as the compiler needs to know the unrolled
structure of the description to be able to generate hardware for it. e kind of recursive functions we
are concerned with are the number-guided recursive functions, meaning that the descriptions bases
its decision to make an additional recursive call on one of its numeric input parameters. Another
common way to write recursive description are those based on pattern matching on a recursive data
structure (such as lists); these descriptions are however not discussed in this subsection.

As an example of a number-guided recursive function in CλasH, we examine an adder tree,
whose recursive description we see in Code Snippet 6.1.

C S . (Adder Tree).

treeSum i xs | i < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum (i− 1) a) + (treeSum (i− 1) b)

In the description of treeSum, the variable i is used as the number guiding the recursion. It also
dictates that the size the input vector should have: the size of the input vector has to be a power
of two. e variable xs is this input vector, containing the elements we want to sum. e split
function splits an input vector into two equally sized halves; it is an unsafe operation in the sense
that it does not check that the input vector has an even length. e function treeSum recursively
adds the two halves of its input vector as long as the recursion guiding variable i (the depth of the
adder tree) is larger than zero. Once i drops to zero only a single element is returned. e intuitive
structure for a tree adder (with a depth of 3) based on this description is shown in Figure 6.1 on
page 55.

e basic idea is now to unroll the recursive description of Code Snippet 6.1 given that the
depth of the tree, the variable i, is set to 3. Not only should we simply unroll the recursive de-
scription, but also simplify the description, as the choice elements guiding the recursion should
not be seen in the structure of the hardware. In the following code snippets we will walk through
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the process of simplifying and unrolling until we have a description of a tree adder with a depth of
3 and no longer contains any recursive calls:

C S . (Step 1: Simplify).

treeSum 3 xs | 3 < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum 2 a) + (treeSum 2 b)

In the first step we replace all occurrences of the variable i with the value 3, and also reduce the
arithmetic operations applied on i, such as i− 1, to single values.

C S . (Step 2: Unroll and Simplify).

treeSum xs = let (a, b) = split xs
in (treeSum2 2 a) + (treeSum2 2 b)

treeSum2 2 xs | 2 < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum2 1 a) + (treesum2 1 b)

We now unroll the recursive call inside treeSum and call it treeSum2, once again replacing all oc-
currences of i by its value and reducing all the arithmetic operations applied on i. We also simplify
treeSum even further by removing the guarded commands whose guard, 3 < 1, evaluates to false.
We also remove the depth parameter of the function as it no longer servers any purpose.

C S . (Step 3: Unroll and Simplify).

treeSum xs = let (a, b) = split xs
in (treeSum2 a) + (treeSum2 b)

treeSum2 xs = let (a, b) = split xs
in (treeSum1 1 a) + (treesum1 1 b)

treeSum1 1 xs | 1 < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum1 0 a) + (treeSum1 0 b)

We now unroll the recursive call of treeSum2 in the same way as we did for treeSum and also apply
the same simplifications. Also notice that because treeSum2 no longer has a depth parameter, that
the call to treeSum2 made by treeSum no longer supplies this depth argument either.

C S . (Step 4: Unroll and Simplify).

treeSum xs = let (a, b) = split xs
in (treeSum2 a) + (treeSum2 b)

treeSum2 xs = let (a, b) = split xs
in (treeSum1 a) + (treesum1 b)

treeSum1 xs = let (a, b) = split xs
in (treeSum0 0 a) + (treeSum0 0 b)

treeSum0 0 xs | 0 < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum0 (−1) a) + (treeSum0 (−1) b)

e last unroll step unrolls the recursive call of treeSum1 and applies the aforementioned simplifi-
cations on treeSum2, treeSum1 and of course the new function treeSum0.
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Figure 6.1: Tree Adder (Depth = 3)

C S . (Step 5 (final): Simplify).

treeSum xs = let (a, b) = split xs
in (treeSum2 a) + (treeSum2 b)

treeSum2 xs = let (a, b) = split xs
in (treeSum1 a) + (treesum1 b)

treeSum1 xs = let (a, b) = split xs
in (treeSum0 a) + (treeSum0 b)

treeSum0 xs = head xs

e guards in the treeSum0 function are now both true, the arithmetic relation 0 < 1, and the
default case (otherwise). We follow the regular semantics of guarded commands, meaning that the
command guarded by the first guard that yields true is evaluated, resulting in the new definition
of treeSum0. is new simplified version of treeSum0 has no recursion, and so unrolling stops. We
now have a definition of treeSum (Code Snippet 6.6) that is specialized for a depth of 3, and no
longer contains any recursive calls and can thus be compiled by CλasH.

e above unrolling and simplifying steps are specialized for the treeSum example and are based
on the general unrolling and simplification flow described by Lynagh [28]. His work describes a
set of Template Haskell functions that together unroll and simplify recursive functions discussed
in this subsection: number-guided recursive functions. ese unroll and simplification functions
were originally meant for optimization purposes. e exact unroll and simplify flow as performed
by that Template Haskell functions in the work of Lynagh [28] does not match the example of the
tree adder we saw earlier. e Template Haskell functions of Lynagh [28] inline recursive calls as
anonymous functions, instead of generating new functions as we saw in the earlier example.

We generated new functions for each unroll and simplification step in our example for the
purposes of presentation, as nested inlined anonymous functions are much harder to read. e
behavior of the set of generated functions is of course the same as the single nested function.

e removal of unused function parameters is also not performed by the original Template
Haskell functions described by Lynagh [28]. From an optimization standpoint this makes sense,
as you might not want to unroll the entire loop, and therefor want to keep the recursion guiding
parameter intact. For CλasH we always want to completely unroll a function, so that is why we
also want to remove the unused function parameters.

e function signature of the Template Haskell unroll function is the following:

type Depth = Maybe Int
type Argument = Int
unroll :: Depth→ Argument→ Lit→ Dec→ Dec

e first argument of the unroll function, the depth, indicates how many recursive steps should be
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unrolled. e depth parameter is of type Maybe, and is a safety parameter indicating how many
recursive steps should be unrolled. If the depth parameter is set to Nothing, the unroll function
can potentially unroll forever. is is why the original simplification process called by the unroll
function does not remove the recursion guiding parameter: If, for example, the unroll function
is told to unroll only 4 recursive calls, then the original recursive function should still exists for
the calls that were potentially not unrolled: this recursive call still needs the recursion guiding
parameter. For CλasH this does not make sense as we always want to completely unroll a recursive
function. e parameter is however left in for CλasH, so a developer can use it to check his
expectations of the recursive depth of his description.

e second parameter of the unroll function indicates which argument of the recursive function
is the recursion guiding parameter. e third parameter is the literal that will be substituted for
the recursion guiding parameter. e fourth and final argument is the AST representation of the
function we want to unroll. is AST can be acquired by quoting the recursive function inside the
special [d|...K brackets.

If we want to make a type-safe tree adder with a depth of 3, we have to specify that the input
vector has to be of size 8. Due to the fact that the GHC compiler typechecks Haskell code within
quotation brackets we can not simply ask for the AST of the following function definition:

treeSum :: Vector D8 (SizedWord D8)→ (SizedWord D8)
treeSum i xs = ...

e typechecker will complain that number of arguments given by the signature does not match
the number of arguments of the function body. We will thus have to apply some Template Haskell
trickery to get a matching function signature and body for the treeSum function. e final decla-
ration for a tree adder with a depth of 3 is shown in Code Snippet 6.7.

C S . (Adder Tree (Depth = 3)).

$(do
[typ, ]← [d|{

treeSum :: Vector D8 (SizedWord D8)→ (SizedWord D8);
treeSum xs = ⊥
}K
[ func]← [d|{

treeSum i xs | i < 1 = head xs
| otherwise = let (a, b) = split xs

in (treeSum (i− 1) a) + (treeSum (i− 1) b)
}K
let func′ = unroll Nothing 0 (IntegerL 3) func
return [typ, func′ ])

e description starts with a splice statement, because we want the unrolled treeSum function
to be spliced back into the code. e next thing we see is the Template Haskell trickery mentioned
earlier, a quoted declaration of the type signature we want, accompanied by a function body that
has the correct number of arguments, but whose output is ⊥. As you can see, the variable typ now
holds the AST of the function signature, and the AST belonging to the body is simply thrown
away. e next quotation statement returns the AST of the recursive treeSum function. e third
statement uses the unroll function to give that AST that represents the unrolled version of the
treeSum function. As you can see, the depth argument of unroll is set to Nothing as we want a fully
unrolled function, no matter how deep the recursion goes. e fourth and final statement then
returns both the AST of the type signature we originally wanted, combined with the AST of the
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unrolled and simplified version of the tree adder. ese two ASTs are then spliced back into the
resulting code which will now pass compilation in CλasH. Once compiled, the structure of the
described hardware will match what we see in Figure 6.1.

We slightly refactored the original work of Lynagh [28] for CλasH so that it would work
with the latest version of Template Haskell. We also added the simplification step that removes the
recursion guiding parameter. We explored and extended the work of Lynagh [28] not only to allow
some form of recursive functions in CλasH, but also to have a proof of concept to indicate that
Template Haskell can greatly increase the expressiveness of CλasH. Future works thus not only lies
in expanding the unroll function to work for pattern-match based recursive functions, but also to
explore further uses of Template Haskell in CλasH. On a shorter timescale we should also explore
the limits of the recursive functions we can now describe using the current implementation of the
unroll function.

..   

In a structural design language like CλasH you often describe a circuit with a certain hierarchy in
mind. In many cases it would prove useful if the designer has a graphical overview of this hierarchy.
is gives rise to the idea of a graphical designer for CλasH, with a Simulink like interface. Like
Simulink, you would connect blocks with a certain functionality to each other using wires. To
support the idea of hierarchy these blocks should be able to be built from other blocks.

We can have predefined blocks that contain certain default operations like the basic arithmetic
and bit level functions. And similar to Simulink, a designer should also be able make custom blocks
that contain function description in CλasH. It should always be possible to save the graphical
design as a set of CλasH source file, where a project file would then contain all the block placement
information, etc. It should also be possible to load textual designs, and either use automatic or
user-guided block placement in the graphical environment.

e designer should also be able to communicate with external VHDL synthesis and modeling
tools, so that you can easily run a post-synthesis simulation of your design and verify that your
design behaves correctly when delays are introduced.

e graphical circuit designer should also have extended support for simulation, in which a
user can step through a simulation and view both the output and state for that specific iteration. A
user should be able to have several simulation input sources: manual input, a set of default input
generators, or a custom input generator. Related to this, is that blocks containing state should have
an interface to set their initial state.

We can think of a lot more functionality, but the ideas set out in this subsection should give a
general idea of what a graphical designer for CλasH could look like.

..  

At the moment, some CλasH designs introduce so-called null slices: empty arrays. ese null
slices are not accepted by every VHDL synthesis tool. Translating CλasH designs to EDIF would
hopefully make it more tool independent. Such an endeavor should not be taken lightly however,
besides having to redesign certain optimizations steps that the VHDL synthesis tools do for us
now, we will also run into technology dependencies. Because even though there are certain standard
components in the EDIF specification, most hardware vendors specify their own components. And
not using those components will certainly result in suboptimal hardware designs. Just documenting
the possible implications of switching to EDIF as a target language for CλasH would be a large
task indeed.
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..    

In some situations you might have an optimized Intellectual Property (IP) block that you want
to incorporate in your CλasH design. e problem is of course, that the IP block is most likely
supplied as a binary file, and in rare cases described in a language like VHDL or Verilog. An
example of such a predefined block is for example floating point adder akin to the one that would
be used for the design of the reduction circuit of Chapter 4. We will use this example as we describe
a solution to use existing IP blocks.

If we wanted to replace the simplified adder by the real IP block, we have to define a placeholder
for it. We have two options for this placeholder as far as functionality goes:

• e placeholder design ignores the input, and assigns⊥ to the output, making simulation of
the new design impossible; the design will however compile. In the reduction circuit design
this is a valid decision, as the behavior of the control logic was independent of the calculated
values. is approach is of course not valid for designs in general.

• We implement something that is functionally equivalent to the IP block, so that we can
at least simulate it. However, to speed up the replacement design we can choose a imple-
mentation that is not translatable to VHDL, meaning that we could use Haskell lists for
example.

Another problem is that the IP block might have defined its own datatypes that it uses as input
and output, and which might not belong to the primitives CλasH can currently translate.

For both the placeholder and type problem we can use the new annotation system in GHC. We
can annotate the placeholder as a black box, so that CλasH knows not to translate this function,
but only define an internal VHDL entity (and no architecture) for it (so that it can be port mapped
in other entities).

For the type problem we can define a simple Haskell datatype, and annotate it so that CλasH
knows that this is a black box type. CλasH will then create an invalid VHDL type declaration,
which the user will have to fill in with the actual type data after translation. is way the user will
not have to define VHDL functions that translate between the built-in CλasH types and VHDL
types introduced by the IP block.
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With the decision made that CλasH, for the time being, will only support the pre-defined func-
tions of the TFV library library, we have to make VHDL templates for these functions. All of
the templates expect vectors that only contain primitives such as Bits, Integers or other vectors
containing only primitives. When that condition is met we can observe that all translations from
CλasH to VHDL are very straightforward.

Select Head Element

e type signature:

head :: PositiveT s⇒ Vector s a→ a

Corresponding VHDL:

function head (veci : array_of_a)
return a is

begin
return veci (0);

end;

Select Last Element

e type signature:

last :: PositiveT s⇒ Vector s a→ a

Corresponding VHDL:

function last (veci : array_of_a)
return a is

begin
return veci (veci′length− 1);

end;
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Select Tail Elements

e type signature:

tail :: PositiveT s⇒ Vector s a→ Vector (Pred s) a

Corresponding VHDL:

function tail (veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to veci′length− 2);

begin
res := veci (1 to veci′length− 1);
return res;

end;

Select Initial Elements

e type signature:

init :: PositiveT s⇒ Vector s a→ Vector (Pred s) a

Corresponding VHDL:

function init (veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to veci′length− 2);

begin
res := veci (0 to veci′length− 2);
return res;

end;

Element Selection

e type signature:

(!) :: (PositiveT s
, NaturalT u
, (s > u)∼True)⇒ Vector s a→ RangedWord u→ a

Corresponding VHDL:

function exclamation (veci : array_of_a;
ix : natural )

return a is
begin
return veci (ix);

end;
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Element Replacement

e type signature:

replace :: (PositiveT s
, NaturalT u
, (s > u)∼True)⇒ Vector s a→ RangedWord u→ a→ Vector s a

Corresponding VHDL:

function replace (veci : array_of_a;
ix : unsigned ;
el : a )

return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
res := veci;
res (to_integer (i)) := a;
return res;

end;

Return first i Elements

e type signature:

take :: NaturalT i⇒ i→ Vector s a→ Vector (Min s i) a

Corresponding VHDL:

function minimum ( nLeft : natural;
nRight : natural)

return natural is
begin
if nLeft < nRight then
return nLeft;

else
return nRight;

end if ;
end;
function take (n : natural ;

veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to (minimum (n, veci′length))− 1);

begin
res := veci (0 to (minimum (n, veci′length))− 1)
return res;

end;
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Return last (s - i) Elements

e type signature:

drop :: NaturalT i⇒ i→ Vector s a→ Vector (s− (Min s i)) a

Corresponding VHDL:

function drop (n : natural ;
veci : array_of_a)

return array_of_a is
variable res : array_of_a (0 to veci′length− n− 1);

begin
res := veci (n to veci′length− 1)
return res;

end;

Add element at the start of the vector

e type signature:

(+>) :: a→ Vector s a→ Vector (Succ s) a

Corresponding VHDL:

function plusgt (el : a ;
veci : array_of_a)

return array_of_a is
variable res : array_of_a (0 to veci′length);

begin
res := el & veci;
return res;

end;

Add element at the end of the vector

e type signature:

(<+) :: Vector s a→ a→ Vector (Succ s) a

Corresponding VHDL:

function ltplus (veci : array_of_a;
el : a )

return array_of_a is
variable res : array_of_a (0 to veci′length);

begin
res := veci & el;
return res;

end;
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Concatenate two vector

e type signature:

(++) :: Vector s a→ Vector s2 a→ Vector (s + s2) a

Corresponding VHDL:

function plusplus (veci1 : array_of_a;
veci2 : array_of_a)

return array_of_a is
variable res : array_of_a (0 to veci1′length + veci2′length− 1);

begin
res := veci1 & veci2;
return res;

end;

Zip two vectors to a vector of tuples

e type signature:

zip :: Vector s a→ Vector s b→ Vector s (a, b)

Corresponding VHDL:

zipVector : for n in 0 to (veco′length− 1) generate
veco (n).A⇐ veci1 (n);
veco (n).B⇐ veci2 (n);

end generate zipVector;

Unzip vector of tuples to a tuple of vectors

e type signature:

unzip :: Vector s (a, b)→ (Vector s a, Vector s b)

Corresponding VHDL:

unzipVector : for n in 0 to (veco′length− 1) generate
veco.A (n)⇐ veci (n).A;
veco.B (n)⇐ veci (n).B;

end generate unzipVector;

Select every s’th Element

e type signature:

select :: (NaturalT f
, NaturalT s
, NaturalT n
, (f < i)∼True
, (((s ∗ n) + f) 6 i)∼True)⇒ f→ s→ n→ Vector i a→ Vector n a
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Corresponding VHDL:

function select (f : natural ;
n : natural ;
s : natural ;
veci : array_of_a)

return array_of_a is
variable res : array_of_a (0 to n− 1);

begin
for i in res′range loop

res (i) := veci (f + i ∗ s);
end loop;
return res;

end;

Map function on all elements

e type signature:

map :: (a→ b)→ Vector s a→ Vector s b

Corresponding VHDL:

mapVector : for n in 0 to (veco′length− 1) generate
begin

comp_ins : entity f
port map (input ⇒ veci (n) ,

output⇒ veco (n),
clock ⇒ clock );

end generate mapVector;

Zip two vector with a function

e type signature:

zipWith :: (a→ b→ c)→ Vector s a→ Vector s b→ Vector s c

Corresponding VHDL:

zipWithVector : for n in 0 to (veco′length− 1) generate
begin

comp_ins : entity f
port map (input1⇒ veci1 (n),

input2⇒ veci2 (n),
output ⇒ veco (n) ,
clock ⇒ clock );

end generate zipWithVector;
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Shift vector 1 position to the left

e type signature:

shiftl :: (PositiveT s
, NaturalT n
, n∼Pred s
, s∼Succ n)⇒ Vector s a→ a→ Vector s a

Corresponding VHDL:

function shiftl (veci : array_of_a;
el : a )

return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
res := el & init (veci);
return res;

end;

Shift vector 1 position to the right

e type signature:

shiftr :: (PositiveT s
, NaturalT n
, n∼Pred s
, s∼Succ n)⇒ Vector s a→ a→ Vector s a

Corresponding VHDL:

function shiftr (veci : array_of_a;
el : a )

return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
res := tail (veci) & el;
return res;

end;

Check if vector is null

e type signature:

null :: Vector D0 a→ Bool

Corresponding VHDL:

function isnull (veci : array_of_a)
return boolean is

begin
return veci′length = 0;

end;
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Rotate vector 1 position to the left

e type signature:

rotl :: NaturalT s⇒ Vector s a→ Vector s a

Corresponding VHDL:

function rotl (veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
if isnull (veci) then

res := veci;
else

res := last (veci) & init (veci)
return res;

end;

Rotate vector 1 position to the right

e type signature:

rotr :: NaturalT s⇒ Vector s a→ Vector s a

Corresponding VHDL:

function rotr (veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
if isnull (veci) then

res := veci;
else

res := tail (veci) & head (veci)
return res;

end;

Generate a vector of ’s’ copies of element ’a’

e type signature:

copy :: NaturalT s⇒ s→ a→ Vector s a

Corresponding VHDL:

function copy (n : natural;
el : a )

return array_of_a is
variable res : array_of_a (0 to n− 1) := (others⇒ el);

begin
return res;

end;
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Fold(l) function over a Vector

e type signature:

foldl :: (a→ b→ a)→ a→ Vector s b→ a

Corresponding VHDL, if the vector is null:

a⇐ start;

Corresponding VHDL, otherwise:

foldlVectorBlock : block
signal tmp : array_of_a_with_length_of_vec;

begin
foldlVector : for n in 0 to (veci′length− 1) generate
begin

firstcell : if n = 0 generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n),

input1⇒ start ,
input2⇒ veci (n),
clock ⇒ clock );

end generate firstcell;
othercells : if n /= 0 generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n) ,

input1⇒ tmp (n− 1),
input2⇒ veci (n) ,
clock ⇒ clock );

end generate othercells;
end generate foldlVector;
a⇐ tmp (veci′length− 1);

end block foldlVectorBlock;

Concatenate vector of vectors

e type signature:

concat :: Vector s1 (Vector s2 a)→ Vector (s1 ∗ s2) a

Corresponding VHDL:

concatVector : for n in 0 to veci′length generate
veco ((n ∗ veci_1′length) to ((n ∗ veci_1′length) + (veci_1′length− 1)))⇐ veci (n)

end generate concatVector;



68 Vector Function Templates

Fold(r) function over a Vector

e type signature:

foldr :: (b→ a→ a)→ a→ Vector s b→ a

Corresponding VHDL, if the vector is null:

a⇐ start;

Corresponding VHDL, otherwise:

foldrVectorBlock : block
signal tmp : array_of_a_with_length_of_vec;

begin
foldrVector : for n in (veci′length− 1) downto 0 generate
begin

firstcell : if n = (veci′length− 1) generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n),

input1⇒ start ,
input2⇒ veci (n),
clock ⇒ clock );

end generate firstcell;
othercells : if n /= (veci′length− 1) generate
begin

comp_ins : entity f
port map (output ⇒ tmp (n) ,

input1⇒ tmp (n + 1),
input2⇒ veci (n) ,
clock ⇒ clock );

end generate othercells;
end generate foldrVector;
a⇐ tmp (0);

end block foldrVectorBlock;

Reverse vector

e type signature:

reverse :: Vector s a→ Vector s a

Corresponding VHDL:

function reverse (veci : array_of_a)
return array_of_a is
variable res : array_of_a (0 to veci′length− 1);

begin
for i in res′range loop

res (vec′length− i− 1) := veci (i)
end loop;
return res;

end;
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Iterate function ’s’ amount of times

e type signature:

iterate :: NaturalT s⇒ (a→ a)→ a→ Vector s a

Corresponding VHDL, if the vector is null:

veco⇐ ””;

Corresponding VHDL, otherwise:

iterateVectorBlock : block
signal tmp : array_of_a_with_length_of_veco;

begin
iterateVector : for n in 0 to (veco′length− 1) generate
begin

firstcell : if n = 0 generate
begin

tmp (n)⇐ start
end generate firstcell;
othercells : if n /= 0 generate
begin

comp_ins : entity f
port map (output⇒ tmp (n) ,

input ⇒ tmp (n− 1),
clock ⇒ clock );

end generate othercells;
end generate iterateVector;
veco⇐ tmp;

end block iterateVectorBlock;

Generate vector of Size ’s’ by applying function ’f ’, ’s’ times

e type signature:

generate :: NaturalT s⇒ (a→ a)→ a→ Vector s a

Corresponding VHDL, if the vector is null:

veco⇐ ””;
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Corresponding VHDL, otherwise:

generateVectorBlock : block
signal tmp : array_of_a_with_length_of_veco;

begin
generateVector : for n in 0 to (veco′length− 1) generate
begin

firstcell : if n = 0 generate
begin

comp_ins : entity f
port map (output⇒ tmp (n) ,

input ⇒ start ,
clock ⇒ clock );

end generate firstcell;
othercells : if n /= 0 generate
begin

comp_ins : entity f
port map (output⇒ tmp (n) ,

input ⇒ tmp (n− 1),
clock ⇒ clock );

end generate othercells;
end generate generateVector;
veco⇐ tmp;

end block generateVectorBlock;
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As the designs made in CλasH got larger, and the translation of Haskell code to generated VHDL
needed to be checked for correctness, so too grew the need for automated test bench generation.
Especially when we look at the number of lines of generated VHDL code produced from the
translation of the reduction circuit design, we see that manual verification is no longer an option.

Another reason why you want a test bench in VHDL (when you are convinced the generated
VHDL is correct), is if you want to do a post-synthesis simulation. You want to be able to quickly
verify that the synthesized design behaves still behaves correctly when delay information is included.

e test bench generation design is split into two parts: e first part is the translation from
Haskell input values to VHDL input values. e second part is the output format; you want to be
able to quickly, and preferably mechanically, verify that the Haskell simulation output is equal to
the VHDL output.

B. I 

e input generation part is concerned with translating the input values that are used for the
Haskell simulation to input values used for the VHDL testbench. e simulation function (run)
expects a list of values, one value to match each clock cycle. e problem is that CλasH does not
support the translation of lists, only the translation of vectors from the TFV library. But for our
purposes here, we are not really interested in the list itself, only the values it contains. Lucky for us,
when GHC desugars lists to Core [26], all the cons (:) operators are exposed. So we can now easily
traverse the application of the cons operators and extract all the Core expressions that correspond
with values contained in the list. is means that at the moment, CλasH partially supports Haskell
lists, but only when the lists are used as containers for the test input.

As the values contained in the input list are supposed to be of a translatable type, the translation
functionality that is already present for the translation of hardware descriptions can be re-used for
the generation of the test bench inputs. So all that remains is a way to organize all the signals
inside the test bench. is is done by generating signal declarations for all the test values inside
the declaration part of the test bench architecture. en, for all of these signals we generate a block
statement, where we use the available translation code to give the signals the actual input values.
e reason we make a block statement is so that we can generate extra signal declaration in case the
value, is for example, a tuple: We then generate a signal declaration for both tuple elements, assign

71



72 Test bench Generation

the values to these signals, and assign these signal to the actual test input signal.
All these test value signals are aggregated to form one big assignment to the input port of the

generated design. e signals are aggregated so that the value at the input port changes every cycle
of the clock, to correspond with the Haskell simulation. e signal assignment to the input port
looks similar to the code below:

C S B. (Test bench, input port assignment).

inputport⇐ testvalue0 after 0 ns,
testvalue1 after 10 ns,
testvalue2 after 20 ns,
...

B. O 

To mimic the behaviour of the run function in Haskell, the test bench should print the value of
the output port. If we route this output to a file, we can then easily, mechanically, compare it to
the output of the run function. So the challenge is to find a general way to convert the values
belonging to the generated VHDL types to a string.

In most Haskell designs, values of data structures can be converted to a printable string using
the show function. is function can be specified by a developer, but in most cases it can also be
automatically derived by a compiler. e idea behind automated derivation of the show function
forms the basis for generating string output functions for the VHDL types.

e CλasH compiler has VHDL templates for show-like functions for all of the built-in types.
e compiler can also generate extra show functions for aggregates (tuples and vectors) of these
built-in types. ese show functions output the same strings as their Haskell counterparts. Cur-
rently these show functions are only generated for: Bit, SignedWord, SignedInt, RangedWord,
tuples and vectors.

Although custom datatypes are (partially) supported in CλasH, there is currently no proper
support for generating VHDL show functions for these custom datatypes.

Unlike the built-in types, for which we know the exact implementation details of their show
function, we do not now in advance what the implementation details are for the show functions
belonging to the custom datatypes. is means we can not make a default VHDL template for
these show functions up front, as we did for the show functions belonging to the built-in types.
e temporary ‘solution’ that is currently in place is just to print the name of the custom datatype
when the corresponding show function is called. In this sense, custom datatypes are improperly
supported by the current CλasH compiler.

A real solution is to examine the automated derivation mechanism of GHC, and use something
similar to generate the VHDL functions. In addition we can have the CλasH compiler search
source-files of the circuit design for an implementation of the Show class, and try to translate the
corresponding show function to VHDL. Both the research of further details, and an implementa-
tion, are left as future work.
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In Chapter 2 we saw how feedback loops in many existing hardware Hardware Description Languages
can cause problems when we try to evaluate the corresponding structure of a hardware description.
e general solution is that, as we traverse the hardware graph we have to find out if we already
visited a node, so that we know it is part of a feedback loop. e following sections give four
possible solutions as to how we might determine if we visited a node earlier in the traversal.

C. S : E T

e fundamental difficulty is that we need a way to identify uniquely at least one node in ev-
ery feedback loop, so that the graph traversal algorithms can determine whether a node has been
seen before. is can be achieved by decorating the circuit specification with an explicit labeling
function:

label :: Signal a⇒ Int→ a→ a

Now labels can be introduced into a circuit specification; for example a labeled version of the
flip-flop circuit might be written as follows:

flipflop′ x = r
where r = label 100 (flipflop x)

e use of labeling solves the problem of traversing circuit graphs with feedback loops, at the cost
of introducing two new problems. It forces a notational burden onto the circuit designer which has
nothing to do with the hardware. Even worse, the labeling must be done correctly and yet cannot
be checked by traversal algorithms.

Suppose that a specification contains two different components that were mistakenly given the
same label. Simulation will not bring out this error, but the netlist will actually describe a different
circuit than the one that was simulated. Later on the circuit will be fabricated using the erroneous
netlist. No amount of simulation or formal methods will help if the circuit that is built does not
match the one that was designed.
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C. S : M

Monads have the potential to solve the problem of manually labeling circuits. Monads can be used
to automate the passing of the traversal state from one computation to the next, while avoiding the
naming errors. us a circuit specification might be written in a form like this:

circ a b = do
p← flipflop a
q← flipflop b
x ← and p q
return x

e monad would be defined so that a unique label is generated for each operation. at is enough
to detect the feedback loops, and thus avoiding the problem of not knowing which exact structure
corresponds with the circuit specification.

A problem is that the circuit specification is no longer a system of simultaneous equations.
Instead, the specification is now a sequence of computations that, when executed, will yield the
desired circuit. It now feels more like writing an imperative program to draw a circuit (as the
sequence of computations is not allowed to be arbitrary due to the local scopes of the monadic
operators), instead of defining the circuit directly.

C. S : F M-

Instead of requiring the designer to insert labels by hand, or using monads, the labels could be
inserted automatically by a program transformation [33]. Template Haskell provides the ability
for a Haskell program to perform computations at compile time, which generate new code that can
then be spliced into the program. Code Snippet C.1 shows a piece of code that uses the quotation
brackets [d|...K to define circ_reg_rep as an algebraic data type representing the code for a definition.
e letter d inside the quotation brackets indicates that it is quoting a (function) definition. ere
are other quotation brackets as well, they are described in Appendix D, the appendix on Haskell
and GHC constructs relevant to this thesis.

C S C. (Register Definition in Template Haskell).

circ_reg_rep =
[d|reg :: a→ a→ a

reg enable x = r
where

r = flipflop (mux enable r x)K
So the function reg describes a register with an enable signal and an input x. By placing the reg
function inside the [d|...K quotation brackets, the value of circ_reg_rep is now the AST of the
function reg, containing both the representation for the type declaration and the equation.

In Template Haskell, all aspects of Haskell which the ordinary programmer can use are also
available to process the AST at program generation time. us a function that works on these
ASTs, e.g. transform_circuit, is just an ordinary Haskell function definition. is transform_circuit
function, could now execute a generalization of the manual labeling transformation described in
Section C.1. e result of this transformation is a new code tree. Using the $(...) syntax, we can
then splice the new code into the program, and resume the compilation:

$(transform_circuit circ_defs_rep)

e designer could of course write this final transformed code directly, bypassing the need for
metaprogramming. However, besides the negative consequences this might have (described in



C.4. Solution 4: Observable Sharing 75

Section C.1), using metaprogramming has another advantage over manual transformation: As the
system evolves, the transform_circuit function can be updated to provide whatever new capabilities
are found necessary (like logic probes to access internal signals), without the programmer having
to rewrite all their existing circuit descriptions.

C. S : O S

Observable sharing is an extension to call-by-need languages (like Haskell), which makes graph
sharing observable [9], meaning we can see feedback loops in a graph. Observable sharing is added
to Haskell by providing immutable reference cells, together with a reference equality test. A prob-
lem with observable sharing is that it is not an conservative extension of a pure functional language.
It is a side effect, although in limited form, for which the semantic implications are not immediately
apparent. is subsection will briefly describe how observable sharing could be implemented; for
the consequences to the semantics of Haskell the reader is referred to the paper of Claessen and
Sands [9]. Code Snippet C.2 shows the interface to provide the aforementioned references.

C S C. (Reference Interface).

type Ref a = ...
ref :: a→ Ref a
deref :: Ref a→ a
(⇔) :: Ref a→ Ref a→ Bool

e next two examples show how to use the new constructs to detect sharing:

let x = ⊥ in (let r = ref x in r⇔ r)
let x = ⊥ in ref x⇔ ref x

In the first equation we create one reference, and compare it with itself, which of course yields True.
In the second equation, we create two different references to the same variable, and so the com-
parison yields False. Now let us take a look how we can use this extension to help us symbolically
evaluate circuits. Observe the two circuit descriptions in Code Snippet C.3.

C S C. (Observable Circuits).

circ1 = let output = dff output in output
circ2 = let output = dff (dff output) in output

In Haskell’s denotational semantics, these two circuits are identical, since circ2 is just recursive
unfolding of circ1. But we would like to represent two different circuits; circ1 has one flipflop and
a loop, whereas circ2 has two flipflops and a loop. If the type for signal representation included a
reference, we could compare the identities of the flipflop components and conclude that in circ1
all flipflops are identical, whereas in circ2 we have two different flipflops.

We can now define a signal datatype in such a way that the creation of identities (references)
happens transparently to the programmer. Code Snippet C.4 shows the Signal datatype from the
paper of Claessen and Sands [9] in which Signal is symbolic, where it is either a variable name (a
wire), or the result of a component which has been supplied with its input signals.
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C S C. (Signal Datatype).

data Signal = Var String | Comp (Ref (String, [Signal]))
comp name args = Comp (ref (name, args))
inv b = comp ”inv” b
dff b = comp ”dff” b
and a b = comp ”and” [a, b]
xor a b = comp ”xor” [a, b]

In this way, a circuit like the oscillate circuit of Chapter 2 still creates a cyclic structure, but it is
now possible to define a function which observes this cycle (using the ⇔ operator) and therefor
terminates when generating a netlist for the circuit.
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is appendix serves as an introduction to certain language constructs in Haskell, and the GHC
Extensions to Haskell, for programmers who have programmed with functional languages, but
not with Haskell in particular. A reader completely unfamiliar with functional programming is
therefor encouraged to read the introductory book on functional programming (in Haskell) by
Hutton [18] (or any other introductory text) before continuing with this appendix.

Much of the information comes from either the Haskell 98 Report [34], or the Wiki-pages
on Haskell.org. Most of the information found in the following sections usually feature only mi-
nor modifications to the original text; therefor, each section is marked with the author, title, and
reference number of the original text.

D. T C

Mark P. Jones - Type Classes with Functional Dependencies [23]

is section describes the class declarations that are used to introduce new type classes in Haskell,
and the instance declarations that are used to populate them. Haskell uses a traditional Hindley-
Milner [10, 17] polymorphic type system to provide static type semantics, but the type system has
been extended with type classes (or just classes) that provide a structured way to introduce overloaded
functions.

Class Declarations:

A class declaration specifies the name for a class and lists the member functions that each type in
the class is expected to support. e actual types in each class—which are normally referred to as
the instances of the class—are described using separate declarations. For example, an Eq type class,
representing the set of equality types, might be introduced by the following declaration:

class Eq a where
(≡) :: a→ a→ Bool

e type variable a that appears in both lines represents an arbitrary instance of the class. e
intended reading of the declaration is that , if a variable is a particular instance of Eq type, then we
can use the (≡) operator at type a→ a→ Bool to compare values of type a.
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Qualified Types:

As we have already indicated, the restriction on the use of the equality operator is reflected in the
type that is assigned to it: (≡) :: Eq a⇒ a→ a→ Bool
Types that are restricted by a predicate like this are referred to as qualified types [24]. Such types
will be assigned to any function that takes either direct or indirect use of the member functions of
a type class at some unspecified type. For example, the functions:

member x xs = any (x ≡) xs
subset xs ys− all (λa→ member x ys) xs

will be assigned types:

member :: Eq a⇒ a→ [a]→ Bool
subset :: Eq a⇒ [a]→ [a]→ Bool

Superclasses:

Classes may be arranged in a hierarchy, and may have multiple member functions. e following
example illustrates a declaration of the Ord type class, which contains the types whose elements can
be ordered using strict (<) and non-strict (6) comparison operators:

class Eq a⇒ Ord a where
(<), (6) :: a→ a→ Bool

In this particular context, the⇒ symbol should not be read as implication; in fact reverse impli-
cation would be a more accurate reading, the intention being that every instance of Ord is also an
instance of Eq. us Eq plays the role of a superclass of Ord. is mechanism allows the programmer
to specify an expected relationship between classes: it is the compiler’s responsibility to ensure that
this property is satisfied, or to produce an error diagnostic if it is not.

Instance Declarations:

e instances of any given class are described by a collection of instance declarations. For example,
the following declarations show how one might define equality for booleans, and for pairs:

instance Eq Bool where
x ≡ y = if x then y else ¬ y

instance (Eq a, Eq b)⇒ Eq (a, b) where
(x, y) ≡ (u, v) = (x ≡ u ∧ y ≡ v)

e first line of the second instance declaration tells us that an equality on values of types a and b
is needed to provide an equality on pairs of type (a, b). No such preconditions are needed for the
definition of equality on booleans. Even with just these two declarations, we have already specified
an equality operation on the infinite family of types that can be constructed from Bool by repeated
use of pairing. Additional declarations, which may be distributed over many modules, can be used
to extend the class to include other data types.

Extension: Multi-parameter type classes

Type classes permit multiple type parameters, and so type classes can be seen as relations on types.
For example, in a predicate of the form R a b, R is interpreted as a two-place relation between types,
so R a b has to be read as the assertion that a and b are related by R. is is a natural generalization
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of the one parameter case because sets are just one-place relations. More generally, we can interpret
an n parameter class by an n-place relation on types.

One of the most commonly suggested applications for multiple parameter type classes is to
provide uniform interfaces to a wide range of collection types [25]. Such types might be expected
to offer ways to construct empty collections, to insert values, to test for membership, and so on.
e following declaration, greatly simplified for the purposes of presentation, introduces a two
parameter class Collects that could be used as the starting point for such a project:

class Collects e ce where
empty :: ce
insert :: e→ ce→ ce
member :: e→ ce→ Bool

e type variable e used here represents the element type, while ce is the type of the collection itself.
Within this framework, we might want to define instances of this class for lists or characteristic
functions (both of which can be used to represent collections of any equality type), bit sets (which
can be used to represent collections of characters), or hash tables (which can be used to represent
any collection whose elements have a hash function). Omitting standard implementation details,
this would lead to the following declarations:

instance Eq e⇒ Collects e [e ] where ...
instance Eq e⇒ Collects e (e→ Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects e ce)⇒ Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting implementations. Unfor-
tunately, there are some serious problems with the class declaration. First, the empty function has
an ambiguous type:

empty :: Collects e ce⇒ ce

By ‘ambiguous’ we mean that there is a type variable e that appears on the left of the⇒ symbol, but
not on the right. e problem with this is that, according to the theoretical foundations of Haskell
overloading, we cannot guarantee a well defined semantics for any term with an ambiguous type.
For this reason, a Haskell system will reject any attempt to define or use such terms.

We can sidestep this specific problem by removing the empty member from the class declaration.
However, although the remaining members, insert and member, do not have ambiguous types, we
still run into problems when we try to use them. For example, consider the following two functions:

f x y coll = insert x (insert y coll)
g coll = f True ’a’ coll

for which the following types are inferred:

f :: (Collects a c, Collects b c)⇒ a→ b→ c→ c
g :: (Collects Bool c, Collects Char c)⇒ c→ c

Notice that the type for f allows the parameters x and y to be assigned different types, even though
it attempts to insert each of the two values, one after the other, into the same collection, coll. If
we hope to model collections that contain only one type of value, then this is clearly an inaccurate
type. Worse still, the definition for g is accepted, without causing a type error. us the error in
this code will not be detected at the point of definition, but only at the point of use, which might
not even be in the same module. Obviously, we would prefer to avoid these problems, eliminating
ambiguities, inferring more accurate types, and providing earlier detection of type errors.
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D. E: F D

Mark P. Jones - Type Classes with Functional Dependencies [23]

Many of the problems of Multi-Parameter Type Classes can be avoided by giving programmers an
opportunity to specify the desired relations on types more precisely. e key idea is to allow the
definitions of type classes to be annotated with Functional Dependencies—an idea that originates in
the theory of relational databases. Functional dependencies are used to constrain the parameters
of type classes. ey let you state that in a Multi-Parameter Type Classes, one of the parameters can
be determined from the others, so that the parameter determined by the others can, for example,
be the return type but none of the argument types of some of the methods.

For example, we can annotate the original class definition of Collects with a dependency ce e,
to be read as “ce uniquely determines e”:

class Collects e ce | ce  e where
empty :: ce
insert :: e→ ce→ ce
member :: e→ ce→ Bool

Now, given two predicates Collects a c and Collects b c with the same collection type c, we can
immediately infer from the Functional Dependencies that a ≡ b. is simple improvement allows
us to infer a more specific type for f :

f :: (Collects e c)⇒ e→ e→ c→ c

An immediate consequence is that the body of g, f True ’a’, will now trigger a type error.

D. E: T F

Haskell.org - GHC/Type families [16]

Indexed type families, or type families for short, are type constructors that represent sets of types.
Set member are denoted by supplying the type family constructor with type parameters, which are
called type indices. e difference between ‘vanilla’ parameterized type constructors and family con-
structors is much like between parametrically polymorphic functions and methods of type classes.
Parametric polymorphic functions behave the same at all type instances, whereas class methods can
change their behavior in dependence of the class type parameters, as can be seen in Figure D.1.

(++) :: [a]→ [a]→ [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

class Append a where
append :: a→ a→ a

instance Append Integer where
append a b = (10 ∗ a) + b

instance Append [a] where
append a b = a ++ b

Figure D.1: Parametric Polymorphism vs Type Class Polymorphism

Similarly, ‘vanilla’ type constructors imply the same data representation for all type instances, but
family constructors can have varying representations types for varying type indices. Figure D.2
shows us an example.
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type Edge g = (Node g, Node g) type family Edge g :: ⋆
type instance Edge Int =

(Node Int, Node Int )
type instance Edge String =

(Node Char, Node Char)

Figure D.2: Type Constructors vs Family Constructors

Indexed type families come in two flavors: data families and type synonym families (the above ex-
ample). ey are the indexed family variants of Algebraic Data Type (ADT) and type synonyms,
respectively. e instances of data families can be data types and newtypes.

D. NT - D R

Simon P. Jones, editor - Haskell 98 Language and Libraries: the Revised Report [34]

A declaration of the form:

newtype cx⇒ T U1 ... Uk = N t

introduces a new type whose representation is the same as an existing type. e type (T U1 ... Uk)
renames the data type t. It differs from a type synonym in that it creates a distinct type that must be
explicitly coerced to or from the original type. Also, unlike type synonyms, newtype may be used
to define recursive types. e constructor N in an expression coerces a value from type t to type
(T U1 ...Uk). Using N in a pattern coerces a value from type (T U1 ...Uk) to type t. ese coercions
may be implemented without execution time overhead; newtype does not change the underlying
representation of an object. A newtype declaration may use field-naming syntax, though of course
there may only be one field. us:

newtype Age = Age {unAge :: Int}

brings into scope both a constructor and a de-constructor:

Age :: Int → Age
unAge :: Age→ Int

D. E: T H

Template Haskell [37] provides the ability for a Haskell program to perform computations at com-
pile time which generate new code that can then be spliced into the program. Template Haskell
defines a standard algebraic data type for representing the abstract syntax of Haskell programs,
and a set of monadic operations for constructing programs. ese are expressible in pure Haskell.
Several syntactic constructs are introduced:

• J...K A quotation construct that gives the AST representation of the enclosed expression.

• [d|...K A quotation construct that gives the AST representation of the enclosed declaration.

• [t|...K A quotation construct that gives the AST representation of the enclosed type.

• $(...) A splicing construct that takes a code representation tree and effectively inserts it into
a program.
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So by ‘quoting’ a piece of Haskell code a programmer can get access to the AST that represents
the ‘quoted’ code. In Template Haskell, all aspects of Haskell which the ordinary programmer can
use are also available to process the AST at program generation time. us a function that works
on these ASTs is just an ordinary Haskell function definition. A programmer can also construct
an AST (if he does not wish to use the quotation mechanism) using monadic operations provided
by the Template Haskell library. As said, the AST of the Haskell code can be spliced back into a
program at compile time. So splicing is the act of inserting a generated AST in the AST of the
original program.

To get a better feeling for the functionality that Template Haskell offers we will examine an
example in which we both the quotation and splicing syntax are used. e function we will examine,
sel, can select any element from a tuple of arbitrary size:

GHCi> $(sel 3 4) (’a’, ’b’, ’c’, ’d’)
’c’
GHCi> $(sel 2 3) (’a’, ’b’, ’c’)
’b’

So what happens in the first example is that we insert the AST of the sel function that is parame-
terized to take the third element out of tuple of size four. In the second example should then speak
for itself. Below we can see the code that is used to construct the AST for the sel function.

sel :: Int→ Int→ ExpQ
sel i n = Jλx→ $(caseE J x K[alt])K
where

alt :: MatchQ
alt = match pat (normalB rhs) [ ]
pat :: Pat
pat = tupP (map varP as)
rhs :: ExpQ
rhs = varE (as !! (i− 1))
as :: [String]
as = [”a” ++ show i | i← [1 . . n]]

e functions caseE, varE function, etc. are the monadic constructor functions mentioned earlier.
e exact working of the above code is beyond the scope of this introductory appendix. However,
to get an idea of how the the above Template Haskell function works, the spliced code for $(sel 3 4)
is shown below:

λx→ case x of (a1, a2, a3, a4)→ a3

Information on Template Haskell is spread over multiple webpages and (un)published papers, as
such, a reader in search of more details on Template Haskell can not be referred to a single source.
Most of the information on Template Haskell is however aggregated on the Haskell.org wiki-page
dedicated to Template Haskell [15].

http://www.haskell.org/haskellwiki/Template_Haskell
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is appendix is included to give a reader a feel for the kind of VHDL that is generated from a
CλasH design. e specific design translated is a 4-tap Finite Impulse Response (FIR) filter, and
it is assumed that the reader is familiar with such filters.

E. CλH D

e CλasH description of the 4-tap FIR filter found in Code Snippet E.1 starts with two type
aliases, which are defined for convenience. e type aliases are followed by the definition of the
dot-product operator, named *+*, which is parametric in both the length of the two input vectors,
as the size of the integers within these vectors. Next follows the monomorphic, first-order, 4-tap FIR
filter. It uses the shiftr function to implement a shift register. e first annotation indicates that it
is the top entity, the second tells that initfir holds the initial value of the state of the FIR filter.

C S E. (4-tap FIR-filter in CλasH).

type Int8 = SizedInt D8
type Vec4 = Vector D4 Int8
xs ∗+ ∗ ys = foldl (+) 0 (zipWith (∗) xs ys)
{−#ANN fir TopEntity #−}
{−#ANN fir (InitState ′initfir) #−}
fir :: State (Vec4, Vec4)→ Int8→ (State (Vec4, Vec4), Int8)
fir (State (hs, us)) x = (State (hs, shiftr us x), us ∗+ ∗ hs)
initfir :: (Vec4, Vec4)
initfir = ($(vectorTH [2 :: Int8, 3,−2, 4]), copy 0)

E. G VHDL

Translation starts with the creation of a types package (Figure E.1), which defines all the translated
types (vector, tuples, custom datatypes, etc.) and certain built-in functions. e built-in functions
are generated according to need, except for the show function, which is generated alongside every
generated type. e unused show functions do not generate extra overhead in the hardware.
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l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;

package t y p e s i s
subtype t f v e c_ index i s i n t e g e r range −1 to in t e g e r ’ high ;

subtype \ s igned_7 \ i s s i gned (0 to 7) ;

type \ vec tor_s igned_7 \ i s array ( t f v e c_ index range <>) of
\ s igned_7 \ ;

subtype \ vec to r−signed_7−0_to_4 \ i s \ vec tor_s igned_7 \ (0
to 3) ;

type \ ( , ) vec to r−signed_7−0_to_4vector−signed_7−0_to_4 \ i s
record A : \ vec to r−signed_7−0_to_4 \ ;

B : \ vec to r−signed_7−0_to_4 \ ;
end record ;

subtype \ vec to r−signed_7−0_to_1 \ i s \ vec tor_s igned_7 \ (0
to 0) ;

subtype \ vec to r−signed_7−0_to_2 \ i s \ vec tor_s igned_7 \ (0
to 1) ;

subtype \ vec to r−signed_7−0_to_3 \ i s \ vec tor_s igned_7 \ (0
to 2) ;

function \ show \ ( s : s t d _ l o g i c )
return s t r i n g ;

function \ show \ (b : boolean )
return s t r i n g ;

function \ show \ ( s i n t : s i gned )
return s t r i n g ;

function \ show \ ( uint : unsigned )
return s t r i n g ;

function \ show \ ( tup : \ ( , ) vec to r−signed_7−0_to_4vector−
signed_7−0_to_4 \ )

return s t r i n g ;

function \+>\ (a : \ s igned_7 \ ;
vec : \ vec tor_s igned_7 \ )

return \ vec tor_s igned_7 \ ;

function \ head \ ( vec : \ vec tor_s igned_7 \ )
return \ s igned_7 \ ;

function \ s h i f t r \ ( vec : \ vec tor_s igned_7 \ ;
a : \ s igned_7 \ )
return \ vec tor_s igned_7 \ ;

function \ show \ ( vec : \ vec tor_s igned_7 \ )
return s t r i n g ;

function \ s i n g l e t o n \ (a : \ s igned_7 \ )
return \ vec tor_s igned_7 \ ;

function \ t a i l \ ( vec : \ vec tor_s igned_7 \ )
return \ vec tor_s igned_7 \ ;

end package t y p e s ;

package body t y p e s i s
function \ show \ ( s : s t d _ l o g i c ) return s t r i n g i s
begin

i f s = ’1 ’ then
return ”High” ;

e l s e
return ”Low” ;

end i f ;
end ;

function \ show \ ( s i n t : s i gned ) return s t r i n g i s
begin

return in t e g e r ’ image ( t o_ in t e g e r ( s i n t ) ) ;
end ;

function \ show \ ( uint : unsigned ) return s t r i n g i s
begin

return in t e g e r ’ image ( t o_ in t e g e r ( uint ) ) ;
end ;

function \ show \ (b : boolean ) return s t r i n g i s
begin

i f b then
return ”True” ;

e l s e
return ” False ” ;

end i f ;
end ;

function \ show \ ( tup : \ ( , ) vec to r−signed_7−0_to_4vector−
signed_7−0_to_4 \ )

return s t r i n g i s
begin

return ’ ( ’ & ( \ show \ ( tup .A) & ’ , ’ & \ show \ ( tup .B) ) & ’ )
’ ;

end ;

function \+>\ (a : \ s igned_7 \ ;
vec : \ vec tor_s igned_7 \ )

return \ vec tor_s igned_7 \ i s
var iable r e s : \ vec tor_s igned_7 \ (0 to vec ’ l eng th ) ;

begin
r e s := a & vec ; return r e s ;

end ;

function \ head \ ( vec : \ vec tor_s igned_7 \ )
return \ s igned_7 \ i s

begin
return vec (0) ;

end ;

function \ s h i f t r \ ( vec : \ vec tor_s igned_7 \ ;
a : \ s igned_7 \ )
return \ vec tor_s igned_7 \ i s

var iable r e s : \ vec tor_s igned_7 \ (0 to vec ’ l eng th − 1) ;
begin

r e s := \ t a i l \ ( vec ) & a ;
return r e s ;

end ;

function \ show \ ( vec : \ vec tor_s igned_7 \ )
return s t r i n g i s

function \doshow \ ( vec : \ vec tor_s igned_7 \ )
return s t r i n g i s

begin
case vec ’ l eng th i s
when 0 =>

return ”” ;
when 1 =>

return \ show \ ( \ head \ ( vec ) ) ;
when others =>

return \ show \ ( \ head \ ( vec ) ) & ’ , ’ &
\doshow \ ( \ t a i l \ ( vec ) ) ;

end case ;
end ;

begin
return ’ < ’ & \doshow \ ( vec ) & ’ > ’ ;

end ;

function \ s i n g l e t o n \ (a : \ s igned_7 \ )
return \ vec tor_s igned_7 \ i s

var iable r e s : \ vec tor_s igned_7 \ (0 to 0) := ( others =>
a ) ;

begin
return r e s ;

end ;

function \ t a i l \ ( vec : \ vec tor_s igned_7 \ )
return \ vec tor_s igned_7 \ i s

var iable r e s : \ vec tor_s igned_7 \ (0 to vec ’ l eng th − 2) ;
begin

r e s := vec (1 to vec ’ l eng th − 1) ;
return r e s ;

end ;
end package body t y p e s ;

Figure E.1: Types package
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In Figure E.2 we see the top entity: the 4-taps FIR filter. A reader will immediately notice that
the automated name generation / derivation does not currently emphasize on readability, instead,
the uniqueness of the names is its primary concern. Perhaps a future version of the CλasH com-
piler will improve on the readability of the generated names. e important parts of the VHDL
architecture are the component instantiation of the dot-product component (Component_1), the
call to the shiftr function (which is defined in the types package), and the state process. Also note
that the reset value of the state is contained in a component (initfirComponent_2).

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty firComponent_0 i s
port ( \ xzedo4 \ : in \ s igned_7 \ ;

\ f o oz e e gz e e g4 \ : out \ s igned_7 \ ;
c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty firComponent_0 ;

architecture s t r u c t u r a l of firComponent_0 i s
s ignal \ dszedq4 \ : \ ( , ) vec to r−signed_7−0_to_4vector−signed_7−0_to_4 \ ;
s ignal \ hszedu4 \ : \ vec to r−signed_7−0_to_4 \ ;
s ignal \uszedw4 \ : \ vec to r−signed_7−0_to_4 \ ;
s ignal \ argzee5zee53 \ : \ s igned_7 \ ;
s ignal \ reszedGzedK3 \ : \ vec to r−signed_7−0_to_4 \ ;
s ignal \ f o o z e e c z e e c4 \ : \ ( , ) vec to r−signed_7−0_to_4vector−signed_7−0_to_4 \ ;

begin
\ hszedu4 \ <= \ dszedq4 \ .A ;
\uszedw4 \ <= \ dszedq4 \ .B ;

\ comp_ins_argzee5zee53 \ : ent i ty Component_1
port map ( \ paramzefczefc4 \ => \uszedw4 \ ,

\ paramzefezefe4 \ => \ hszedu4 \ ,
\ r e s z e f g z e f g 4 \ => \ argzee5zee53 \ ,
c l o c k => c lo ck ,
r e s e t n => r e s e t n ) ;

\ reszedGzedK3 \ <= \ s h i f t r \ ( \ uszedw4 \ , \ xzedo4 \ ) ;

\ f o o z e e c z e e c4 \ .A <= \ hszedu4 \ ;
\ f o o z e e c z e e c4 \ .B <= \ reszedGzedK3 \ ;

\ f o oz e e gz e e g4 \ <= \ argzee5zee53 \ ;

s t a t e : block
s ignal \ i n i t f i r v a l \ : \ ( , ) vec to r−signed_7−0_to_4vector−signed_7−0_to_4 \ ;

begin
\ r e s e t v a l _ i n i t f i r r c S J 2 \ : ent i ty initfirComponent_2

port map ( \ foozegpzegp4 \ => \ i n i t f i r v a l \ ,
c l o c k => c lock ,
r e s e t n => r e s e t n ) ;

s t a t eupda t e : process ( c lo ck , r e s e tn , \ i n i t f i r v a l \ )
begin

i f r e s e t n = ’0 ’ then
\ dszedq4 \ <= \ i n i t f i r v a l \ ;

e l s i f r i s i n g_edg e ( c l o c k ) then
\ dszedq4 \ <= \ f o o z e e c z e e c4 \ ;

end i f ;
end process s t a t eupda t e ;

end block s t a t e ;
end architecture s t r u c t u r a l ;

Figure E.2: 4-tap FIR Filter



86 CλasH Generated VHDL

Figure E.3 shows us the VHDL code for the dot-product component (Component_1). e
first thing a reader will most likely notice is that the only thing Component_1 does is instantiate
Component_3, which is the component that holds the actual logic. is is most likely caused by
the de-sugaring process of the compiler (described in more detail by Kooijman [26]). ough it is
a minor inconvenience, it causes no additional overhead in the eventual hardware, as such, trying
to remove these ‘wrappers’ during VHDL generation is of low priority.

One will also notice that both components have a clock and a reset port, even though both
are purely combinatorial entities. is is because every entity, whether they are stateless or stateful,
has a clock and reset port. As the unused ports will not generated any overhead in the eventual
hardware, removing them in a future version of the CλasH compiler is considered a low priority
task. Examining the dot-product component we see how the templates for the zipWith function
and the foldl function shown in appendix A are instantiated for the specific vector lengths.

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty Component_1 i s
port ( \ paramzefczefc4 \ : in \ vec to r−signed_7−0_to_4 \ ;

\ paramzefezefe4 \ : in \ vec to r−signed_7−0_to_4 \ ;
\ r e s z e f g z e f g 4 \ : out \ s igned_7 \ ;
c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty Component_1 ;

architecture s t r u c t u r a l of Component_1 i s
begin
\ comp_ins_re sze f gze f g4 \ : ent i ty Component_3
port map ( \ paramzegJzegJ3 \ => \ paramzefczefc4 \ ,

\ paramzegLzegL3 \ => \ paramzefezefe4 \ ,
\ f o oz eh fz eh f4 \ => \ r e s z e f g z e f g 4 \ ,
c l o c k => c lock ,
r e s e t n => r e s e t n ) ;

end architecture s t r u c t u r a l ;

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty Component_3 i s
port ( \ paramzegJzegJ3 \ : in \ vec to r−signed_7−0_to_4 \ ;

\ paramzegLzegL3 \ : in \ vec to r−signed_7−0_to_4 \ ;
\ f o oz eh fz eh f4 \ : out \ s igned_7 \ ;
c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty Component_3 ;

architecture s t r u c t u r a l of Component_3 i s
s ignal \ reszeh9zeh93 \ : \ s igned_7 \ ;
s ignal \ argzeh3zeh33 \ : \ vec to r−signed_7−0_to_4 \ ;

begin

\ reszeh9zeh93 \ <= t o_ s i gned (0 , 8) ;

\ zipWithVectorargzeh3 \ : for n in 0 to 3 generate
begin

\ comp_ins_argzeh3zeh33 (n) \ : ent i ty funzehbComponent_3
port map ( \ paramzehtzeht4 \ => \ paramzegJzegJ3 \ (n) ,

\ paramzehvzehv4 \ => \ paramzegLzegL3 \ (n) ,
\ re szeh6zehr4 \ => \ argzeh3zeh33 \ (n) ,
c l o c k => c lo ck ,
r e s e t n => r e s e t n ) ;

end generate \ zipWithVectorargzeh3 \ ;

\ f o l d lV e c t o r f o o z e h f \ : block
signal tmp : \ vec to r−signed_7−0_to_4 \ ;

begin
\ f o ld lVe c t o ra r gz eh3 \ : for n in 0 to 3 generate
begin

\ f i r s t c e l l \ : i f n = 0 generate
begin

\ comp_ins_tmp (n) \ : ent i ty funzehdComponent_4
port map ( \ paramzehFzehF3 \ => \ reszeh9zeh93 \ ,

\paramzehHzehH3 \ => \ argzeh3zeh33 \ (n) ,
\ reszeh8zehD3 \ => tmp (n) ,
c l o c k => c lo ck ,
r e s e t n => r e s e t n ) ;

end generate \ f i r s t c e l l \ ;
\ o t h e r c e l l \ : i f n /= 0 generate
begin

\ comp_ins_tmp (n) \ : ent i ty funzehdComponent_4
port map ( \ paramzehFzehF3 \ => tmp (n − 1) ,

\paramzehHzehH3 \ => \ argzeh3zeh33 \ (n) ,
\ reszeh8zehD3 \ => tmp (n) ,
c l o c k => c lo ck ,
r e s e t n => r e s e t n ) ;

end generate \ o t h e r c e l l \ ;
end generate \ f o ld lVe c t o ra r gz eh3 \ ;
\ f o oz eh fz eh f4 \ <= tmp (3) ;

end block \ f o l d lV e c t o r f o o z e h f \ ;
end architecture s t r u c t u r a l ;

Figure E.3: Dot-product

Again, as a result of the de-sugaring process, the multiplication and addition operator are trans-
lated to separate components, instead of being inlined in the dot-product component. ese com-
ponents are listed in Figure E.4, where the funzehbComponent_3 component and the funzehdCom-
ponent_4 component are the multiplication and addition operator respectively. e reader will
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notice that the result of the multiplication has to be resized to the same number of bits as the num-
ber of bits in the input values. is is done so that the resulting hardware corresponds with the
CλasH design, where the result of a multiplication also has the same number of bits as the number
of bits in the input values.

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty funzehbComponent_3 i s
port ( \ paramzehtzeht4 \ : in \ s igned_7 \ ;

\ paramzehvzehv4 \ : in \ s igned_7 \ ;
\ re szeh6zehr4 \ : out \ s igned_7 \ ;
c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty funzehbComponent_3 ;

architecture s t r u c t u r a l of funzehbComponent_3 i s
begin

\ re szeh6zehr4 \ <=
r e s i z e ( \ paramzehtzeht4 \ * \ paramzehvzehv4 \ , 8) ;

end architecture s t r u c t u r a l ;

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty funzehdComponent_4 i s
port ( \ paramzehFzehF3 \ : in \ s igned_7 \ ;

\paramzehHzehH3 \ : in \ s igned_7 \ ;
\ reszeh8zehD3 \ : out \ s igned_7 \ ;
c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty funzehdComponent_4 ;

architecture s t r u c t u r a l of funzehdComponent_4 i s
begin

\ reszeh8zehD3 \ <=
\paramzehFzehF3 \ + \paramzehHzehH3 \ ;

end architecture s t r u c t u r a l ;

Figure E.4: Multiplication & Addition

Finally, in Figure E.5, we see the component that holds the initial values for the registers of
the FIR filter (initfirComponent_2). We see how the vectorTH function is translated to a series of
value-to-vector concatenation functions (+>) and a call to the singleton function.

use work . t y p e s . a l l ;
use work . a l l ;
l ib ra ry IEEE ;
use IEEE . s td_logic_1164 . a l l ;
use IEEE . numeric_std . a l l ;
use s t d . t e x t i o . a l l ;

ent i ty initfirComponent_2 i s
port ( \ foozegpzegp4 \ : out \ ( , ) vec to r−signed_7−0
_to_4vector−signed_7−0_to_4 \ ;

c l o c k : in s t d _ l o g i c ;
r e s e t n : in s t d _ l o g i c ) ;

end enti ty initfirComponent_2 ;

architecture s t r u c t u r a l of initfirComponent_2 i s
s ignal \ reszefAzefH3 \ : \ s igned_7 \ ;
s ignal \ foozegdzegd4 \ : \ vec to r−signed_7−0_to_4 \ ;
s ignal \ argzefPzefP3 \ : \ s igned_7 \ ;
s ignal \ f o o z e g f z e g f 4 \ : \ vec to r−signed_7−0_to_1 \ ;
s ignal \ argzefNzefN3 \ : \ s igned_7 \ ;
s ignal \ foozeghzegh4 \ : \ vec to r−signed_7−0_to_2 \ ;

s ignal \ argzefLzefL3 \ : \ s igned_7 \ ;
s ignal \ f o o z e g j z e g j 4 \ : \ vec to r−signed_7−0_to_3 \ ;
s ignal \ a r g z e f J z e f J 3 \ : \ s igned_7 \ ;
s ignal \ f o o z e g l z e g l 4 \ : \ vec to r−signed_7−0_to_4 \ ;
s ignal \ foozegnzegn4 \ : \ vec to r−signed_7−0_to_4 \ ;

begin
\ reszefAzefH3 \ <= t o_ s i gned (0 , 8) ;
\ foozegdzegd4 \ <= ( others => \ reszefAzefH3 \ ) ;

\ argzefPzefP3 \ <= t o_ s i gned (4 , 8) ;
\ f o o z e g f z e g f 4 \ <= \ s i n g l e t o n \ ( \ argzefPzefP3 \ ) ;
\ argzefNzefN3 \ <= t o_ s i gned (254 , 8) ;
\ foozeghzegh4 \ <= \+ >\(\ argzefNzefN3 \ , \ f o o z e g f z e g f 4 \ ) ;
\ argzefLzefL3 \ <= t o_ s i gned (3 , 8) ;
\ f o o z e g j z e g j 4 \ <= \+ >\(\ argzefLzefL3 \ , \ foozeghzegh4 \ ) ;
\ a r g z e f J z e f J 3 \ <= t o_ s i gned (2 , 8) ;
\ f o o z e g l z e g l 4 \ <= \+ >\(\ a r g z e f J z e f J 3 \ , \ f o o z e g j z e g j 4 \ ) ;
\ foozegnzegn4 \ <= \ f o o z e g l z e g l 4 \ ;

\ foozegpzegp4 \ .A <= \ foozegnzegn4 \ ;
\ foozegpzegp4 \ .B <= \ foozegdzegd4 \ ;

end architecture s t r u c t u r a l ;

Figure E.5: Initial register values
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